summaryrefslogtreecommitdiffstats
path: root/vendor/hashbrown/src/raw/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/hashbrown/src/raw/mod.rs')
-rw-r--r--vendor/hashbrown/src/raw/mod.rs1246
1 files changed, 1053 insertions, 193 deletions
diff --git a/vendor/hashbrown/src/raw/mod.rs b/vendor/hashbrown/src/raw/mod.rs
index 0e96306ef..1a6dced4b 100644
--- a/vendor/hashbrown/src/raw/mod.rs
+++ b/vendor/hashbrown/src/raw/mod.rs
@@ -25,8 +25,10 @@ cfg_if! {
))] {
mod sse2;
use sse2 as imp;
+ } else if #[cfg(all(target_arch = "aarch64", target_feature = "neon"))] {
+ mod neon;
+ use neon as imp;
} else {
- #[path = "generic.rs"]
mod generic;
use generic as imp;
}
@@ -37,36 +39,26 @@ pub(crate) use self::alloc::{do_alloc, Allocator, Global};
mod bitmask;
-use self::bitmask::{BitMask, BitMaskIter};
+use self::bitmask::BitMaskIter;
use self::imp::Group;
// Branch prediction hint. This is currently only available on nightly but it
// consistently improves performance by 10-15%.
+#[cfg(not(feature = "nightly"))]
+use core::convert::identity as likely;
+#[cfg(not(feature = "nightly"))]
+use core::convert::identity as unlikely;
#[cfg(feature = "nightly")]
use core::intrinsics::{likely, unlikely};
-// On stable we can use #[cold] to get a equivalent effect: this attributes
-// suggests that the function is unlikely to be called
-#[cfg(not(feature = "nightly"))]
-#[inline]
-#[cold]
-fn cold() {}
-
-#[cfg(not(feature = "nightly"))]
-#[inline]
-fn likely(b: bool) -> bool {
- if !b {
- cold();
- }
- b
-}
+// Use strict provenance functions if available.
+#[cfg(feature = "nightly")]
+use core::ptr::invalid_mut;
+// Implement it with a cast otherwise.
#[cfg(not(feature = "nightly"))]
-#[inline]
-fn unlikely(b: bool) -> bool {
- if b {
- cold();
- }
- b
+#[inline(always)]
+fn invalid_mut<T>(addr: usize) -> *mut T {
+ addr as *mut T
}
#[inline]
@@ -272,6 +264,11 @@ impl TableLayout {
}
}
+/// A reference to an empty bucket into which an can be inserted.
+pub struct InsertSlot {
+ index: usize,
+}
+
/// A reference to a hash table bucket containing a `T`.
///
/// This is usually just a pointer to the element itself. However if the element
@@ -299,11 +296,79 @@ impl<T> Clone for Bucket<T> {
impl<T> Bucket<T> {
const IS_ZERO_SIZED_TYPE: bool = mem::size_of::<T>() == 0;
+ /// Creates a [`Bucket`] that contain pointer to the data.
+ /// The pointer calculation is performed by calculating the
+ /// offset from given `base` pointer (convenience for
+ /// `base.as_ptr().sub(index)`).
+ ///
+ /// `index` is in units of `T`; e.g., an `index` of 3 represents a pointer
+ /// offset of `3 * size_of::<T>()` bytes.
+ ///
+ /// If the `T` is a ZST, then we instead track the index of the element
+ /// in the table so that `erase` works properly (return
+ /// `NonNull::new_unchecked((index + 1) as *mut T)`)
+ ///
+ /// # Safety
+ ///
+ /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived
+ /// from the safety rules for [`<*mut T>::sub`] method of `*mut T` and the safety
+ /// rules of [`NonNull::new_unchecked`] function.
+ ///
+ /// Thus, in order to uphold the safety contracts for the [`<*mut T>::sub`] method
+ /// and [`NonNull::new_unchecked`] function, as well as for the correct
+ /// logic of the work of this crate, the following rules are necessary and
+ /// sufficient:
+ ///
+ /// * the `base` pointer must not be `dangling` and must points to the
+ /// end of the first `value element` from the `data part` of the table, i.e.
+ /// must be the pointer that returned by [`RawTable::data_end`] or by
+ /// [`RawTableInner::data_end<T>`];
+ ///
+ /// * `index` must not be greater than `RawTableInner.bucket_mask`, i.e.
+ /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)`
+ /// must be no greater than the number returned by the function
+ /// [`RawTable::buckets`] or [`RawTableInner::buckets`].
+ ///
+ /// If `mem::size_of::<T>() == 0`, then the only requirement is that the
+ /// `index` must not be greater than `RawTableInner.bucket_mask`, i.e.
+ /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)`
+ /// must be no greater than the number returned by the function
+ /// [`RawTable::buckets`] or [`RawTableInner::buckets`].
+ ///
+ /// [`Bucket`]: crate::raw::Bucket
+ /// [`<*mut T>::sub`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.sub-1
+ /// [`NonNull::new_unchecked`]: https://doc.rust-lang.org/stable/std/ptr/struct.NonNull.html#method.new_unchecked
+ /// [`RawTable::data_end`]: crate::raw::RawTable::data_end
+ /// [`RawTableInner::data_end<T>`]: RawTableInner::data_end<T>
+ /// [`RawTable::buckets`]: crate::raw::RawTable::buckets
+ /// [`RawTableInner::buckets`]: RawTableInner::buckets
#[inline]
unsafe fn from_base_index(base: NonNull<T>, index: usize) -> Self {
+ // If mem::size_of::<T>() != 0 then return a pointer to an `element` in
+ // the data part of the table (we start counting from "0", so that
+ // in the expression T[last], the "last" index actually one less than the
+ // "buckets" number in the table, i.e. "last = RawTableInner.bucket_mask"):
+ //
+ // `from_base_index(base, 1).as_ptr()` returns a pointer that
+ // points here in the data part of the table
+ // (to the start of T1)
+ // |
+ // | `base: NonNull<T>` must point here
+ // | (to the end of T0 or to the start of C0)
+ // v v
+ // [Padding], Tlast, ..., |T1|, T0, |C0, C1, ..., Clast
+ // ^
+ // `from_base_index(base, 1)` returns a pointer
+ // that points here in the data part of the table
+ // (to the end of T1)
+ //
+ // where: T0...Tlast - our stored data; C0...Clast - control bytes
+ // or metadata for data.
let ptr = if Self::IS_ZERO_SIZED_TYPE {
- // won't overflow because index must be less than length
- (index + 1) as *mut T
+ // won't overflow because index must be less than length (bucket_mask)
+ // and bucket_mask is guaranteed to be less than `isize::MAX`
+ // (see TableLayout::calculate_layout_for method)
+ invalid_mut(index + 1)
} else {
base.as_ptr().sub(index)
};
@@ -311,27 +376,183 @@ impl<T> Bucket<T> {
ptr: NonNull::new_unchecked(ptr),
}
}
+
+ /// Calculates the index of a [`Bucket`] as distance between two pointers
+ /// (convenience for `base.as_ptr().offset_from(self.ptr.as_ptr()) as usize`).
+ /// The returned value is in units of T: the distance in bytes divided by
+ /// [`core::mem::size_of::<T>()`].
+ ///
+ /// If the `T` is a ZST, then we return the index of the element in
+ /// the table so that `erase` works properly (return `self.ptr.as_ptr() as usize - 1`).
+ ///
+ /// This function is the inverse of [`from_base_index`].
+ ///
+ /// # Safety
+ ///
+ /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived
+ /// from the safety rules for [`<*const T>::offset_from`] method of `*const T`.
+ ///
+ /// Thus, in order to uphold the safety contracts for [`<*const T>::offset_from`]
+ /// method, as well as for the correct logic of the work of this crate, the
+ /// following rules are necessary and sufficient:
+ ///
+ /// * `base` contained pointer must not be `dangling` and must point to the
+ /// end of the first `element` from the `data part` of the table, i.e.
+ /// must be a pointer that returns by [`RawTable::data_end`] or by
+ /// [`RawTableInner::data_end<T>`];
+ ///
+ /// * `self` also must not contain dangling pointer;
+ ///
+ /// * both `self` and `base` must be created from the same [`RawTable`]
+ /// (or [`RawTableInner`]).
+ ///
+ /// If `mem::size_of::<T>() == 0`, this function is always safe.
+ ///
+ /// [`Bucket`]: crate::raw::Bucket
+ /// [`from_base_index`]: crate::raw::Bucket::from_base_index
+ /// [`RawTable::data_end`]: crate::raw::RawTable::data_end
+ /// [`RawTableInner::data_end<T>`]: RawTableInner::data_end<T>
+ /// [`RawTable`]: crate::raw::RawTable
+ /// [`RawTableInner`]: RawTableInner
+ /// [`<*const T>::offset_from`]: https://doc.rust-lang.org/nightly/core/primitive.pointer.html#method.offset_from
#[inline]
unsafe fn to_base_index(&self, base: NonNull<T>) -> usize {
+ // If mem::size_of::<T>() != 0 then return an index under which we used to store the
+ // `element` in the data part of the table (we start counting from "0", so
+ // that in the expression T[last], the "last" index actually is one less than the
+ // "buckets" number in the table, i.e. "last = RawTableInner.bucket_mask").
+ // For example for 5th element in table calculation is performed like this:
+ //
+ // mem::size_of::<T>()
+ // |
+ // | `self = from_base_index(base, 5)` that returns pointer
+ // | that points here in tha data part of the table
+ // | (to the end of T5)
+ // | | `base: NonNull<T>` must point here
+ // v | (to the end of T0 or to the start of C0)
+ // /???\ v v
+ // [Padding], Tlast, ..., |T10|, ..., T5|, T4, T3, T2, T1, T0, |C0, C1, C2, C3, C4, C5, ..., C10, ..., Clast
+ // \__________ __________/
+ // \/
+ // `bucket.to_base_index(base)` = 5
+ // (base.as_ptr() as usize - self.ptr.as_ptr() as usize) / mem::size_of::<T>()
+ //
+ // where: T0...Tlast - our stored data; C0...Clast - control bytes or metadata for data.
if Self::IS_ZERO_SIZED_TYPE {
+ // this can not be UB
self.ptr.as_ptr() as usize - 1
} else {
offset_from(base.as_ptr(), self.ptr.as_ptr())
}
}
+
+ /// Acquires the underlying raw pointer `*mut T` to `data`.
+ ///
+ /// # Note
+ ///
+ /// If `T` is not [`Copy`], do not use `*mut T` methods that can cause calling the
+ /// destructor of `T` (for example the [`<*mut T>::drop_in_place`] method), because
+ /// for properly dropping the data we also need to clear `data` control bytes. If we
+ /// drop data, but do not clear `data control byte` it leads to double drop when
+ /// [`RawTable`] goes out of scope.
+ ///
+ /// If you modify an already initialized `value`, so [`Hash`] and [`Eq`] on the new
+ /// `T` value and its borrowed form *must* match those for the old `T` value, as the map
+ /// will not re-evaluate where the new value should go, meaning the value may become
+ /// "lost" if their location does not reflect their state.
+ ///
+ /// [`RawTable`]: crate::raw::RawTable
+ /// [`<*mut T>::drop_in_place`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.drop_in_place
+ /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html
+ /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # #[cfg(feature = "raw")]
+ /// # fn test() {
+ /// use core::hash::{BuildHasher, Hash};
+ /// use hashbrown::raw::{Bucket, RawTable};
+ ///
+ /// type NewHashBuilder = core::hash::BuildHasherDefault<ahash::AHasher>;
+ ///
+ /// fn make_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
+ /// use core::hash::Hasher;
+ /// let mut state = hash_builder.build_hasher();
+ /// key.hash(&mut state);
+ /// state.finish()
+ /// }
+ ///
+ /// let hash_builder = NewHashBuilder::default();
+ /// let mut table = RawTable::new();
+ ///
+ /// let value = ("a", 100);
+ /// let hash = make_hash(&hash_builder, &value.0);
+ ///
+ /// table.insert(hash, value.clone(), |val| make_hash(&hash_builder, &val.0));
+ ///
+ /// let bucket: Bucket<(&str, i32)> = table.find(hash, |(k1, _)| k1 == &value.0).unwrap();
+ ///
+ /// assert_eq!(unsafe { &*bucket.as_ptr() }, &("a", 100));
+ /// # }
+ /// # fn main() {
+ /// # #[cfg(feature = "raw")]
+ /// # test()
+ /// # }
+ /// ```
#[inline]
pub fn as_ptr(&self) -> *mut T {
if Self::IS_ZERO_SIZED_TYPE {
// Just return an arbitrary ZST pointer which is properly aligned
- mem::align_of::<T>() as *mut T
+ // invalid pointer is good enough for ZST
+ invalid_mut(mem::align_of::<T>())
} else {
unsafe { self.ptr.as_ptr().sub(1) }
}
}
+
+ /// Create a new [`Bucket`] that is offset from the `self` by the given
+ /// `offset`. The pointer calculation is performed by calculating the
+ /// offset from `self` pointer (convenience for `self.ptr.as_ptr().sub(offset)`).
+ /// This function is used for iterators.
+ ///
+ /// `offset` is in units of `T`; e.g., a `offset` of 3 represents a pointer
+ /// offset of `3 * size_of::<T>()` bytes.
+ ///
+ /// # Safety
+ ///
+ /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived
+ /// from the safety rules for [`<*mut T>::sub`] method of `*mut T` and safety
+ /// rules of [`NonNull::new_unchecked`] function.
+ ///
+ /// Thus, in order to uphold the safety contracts for [`<*mut T>::sub`] method
+ /// and [`NonNull::new_unchecked`] function, as well as for the correct
+ /// logic of the work of this crate, the following rules are necessary and
+ /// sufficient:
+ ///
+ /// * `self` contained pointer must not be `dangling`;
+ ///
+ /// * `self.to_base_index() + ofset` must not be greater than `RawTableInner.bucket_mask`,
+ /// i.e. `(self.to_base_index() + ofset) <= RawTableInner.bucket_mask` or, in other
+ /// words, `self.to_base_index() + ofset + 1` must be no greater than the number returned
+ /// by the function [`RawTable::buckets`] or [`RawTableInner::buckets`].
+ ///
+ /// If `mem::size_of::<T>() == 0`, then the only requirement is that the
+ /// `self.to_base_index() + ofset` must not be greater than `RawTableInner.bucket_mask`,
+ /// i.e. `(self.to_base_index() + ofset) <= RawTableInner.bucket_mask` or, in other words,
+ /// `self.to_base_index() + ofset + 1` must be no greater than the number returned by the
+ /// function [`RawTable::buckets`] or [`RawTableInner::buckets`].
+ ///
+ /// [`Bucket`]: crate::raw::Bucket
+ /// [`<*mut T>::sub`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.sub-1
+ /// [`NonNull::new_unchecked`]: https://doc.rust-lang.org/stable/std/ptr/struct.NonNull.html#method.new_unchecked
+ /// [`RawTable::buckets`]: crate::raw::RawTable::buckets
+ /// [`RawTableInner::buckets`]: RawTableInner::buckets
#[inline]
unsafe fn next_n(&self, offset: usize) -> Self {
let ptr = if Self::IS_ZERO_SIZED_TYPE {
- (self.ptr.as_ptr() as usize + offset) as *mut T
+ // invalid pointer is good enough for ZST
+ invalid_mut(self.ptr.as_ptr() as usize + offset)
} else {
self.ptr.as_ptr().sub(offset)
};
@@ -339,26 +560,212 @@ impl<T> Bucket<T> {
ptr: NonNull::new_unchecked(ptr),
}
}
+
+ /// Executes the destructor (if any) of the pointed-to `data`.
+ ///
+ /// # Safety
+ ///
+ /// See [`ptr::drop_in_place`] for safety concerns.
+ ///
+ /// You should use [`RawTable::erase`] instead of this function,
+ /// or be careful with calling this function directly, because for
+ /// properly dropping the data we need also clear `data` control bytes.
+ /// If we drop data, but do not erase `data control byte` it leads to
+ /// double drop when [`RawTable`] goes out of scope.
+ ///
+ /// [`ptr::drop_in_place`]: https://doc.rust-lang.org/core/ptr/fn.drop_in_place.html
+ /// [`RawTable`]: crate::raw::RawTable
+ /// [`RawTable::erase`]: crate::raw::RawTable::erase
#[cfg_attr(feature = "inline-more", inline)]
pub(crate) unsafe fn drop(&self) {
self.as_ptr().drop_in_place();
}
+
+ /// Reads the `value` from `self` without moving it. This leaves the
+ /// memory in `self` unchanged.
+ ///
+ /// # Safety
+ ///
+ /// See [`ptr::read`] for safety concerns.
+ ///
+ /// You should use [`RawTable::remove`] instead of this function,
+ /// or be careful with calling this function directly, because compiler
+ /// calls its destructor when readed `value` goes out of scope. It
+ /// can cause double dropping when [`RawTable`] goes out of scope,
+ /// because of not erased `data control byte`.
+ ///
+ /// [`ptr::read`]: https://doc.rust-lang.org/core/ptr/fn.read.html
+ /// [`RawTable`]: crate::raw::RawTable
+ /// [`RawTable::remove`]: crate::raw::RawTable::remove
#[inline]
pub(crate) unsafe fn read(&self) -> T {
self.as_ptr().read()
}
+
+ /// Overwrites a memory location with the given `value` without reading
+ /// or dropping the old value (like [`ptr::write`] function).
+ ///
+ /// # Safety
+ ///
+ /// See [`ptr::write`] for safety concerns.
+ ///
+ /// # Note
+ ///
+ /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match
+ /// those for the old `T` value, as the map will not re-evaluate where the new
+ /// value should go, meaning the value may become "lost" if their location
+ /// does not reflect their state.
+ ///
+ /// [`ptr::write`]: https://doc.rust-lang.org/core/ptr/fn.write.html
+ /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html
+ /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html
#[inline]
pub(crate) unsafe fn write(&self, val: T) {
self.as_ptr().write(val);
}
+
+ /// Returns a shared immutable reference to the `value`.
+ ///
+ /// # Safety
+ ///
+ /// See [`NonNull::as_ref`] for safety concerns.
+ ///
+ /// [`NonNull::as_ref`]: https://doc.rust-lang.org/core/ptr/struct.NonNull.html#method.as_ref
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # #[cfg(feature = "raw")]
+ /// # fn test() {
+ /// use core::hash::{BuildHasher, Hash};
+ /// use hashbrown::raw::{Bucket, RawTable};
+ ///
+ /// type NewHashBuilder = core::hash::BuildHasherDefault<ahash::AHasher>;
+ ///
+ /// fn make_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
+ /// use core::hash::Hasher;
+ /// let mut state = hash_builder.build_hasher();
+ /// key.hash(&mut state);
+ /// state.finish()
+ /// }
+ ///
+ /// let hash_builder = NewHashBuilder::default();
+ /// let mut table = RawTable::new();
+ ///
+ /// let value: (&str, String) = ("A pony", "is a small horse".to_owned());
+ /// let hash = make_hash(&hash_builder, &value.0);
+ ///
+ /// table.insert(hash, value.clone(), |val| make_hash(&hash_builder, &val.0));
+ ///
+ /// let bucket: Bucket<(&str, String)> = table.find(hash, |(k, _)| k == &value.0).unwrap();
+ ///
+ /// assert_eq!(
+ /// unsafe { bucket.as_ref() },
+ /// &("A pony", "is a small horse".to_owned())
+ /// );
+ /// # }
+ /// # fn main() {
+ /// # #[cfg(feature = "raw")]
+ /// # test()
+ /// # }
+ /// ```
#[inline]
pub unsafe fn as_ref<'a>(&self) -> &'a T {
&*self.as_ptr()
}
+
+ /// Returns a unique mutable reference to the `value`.
+ ///
+ /// # Safety
+ ///
+ /// See [`NonNull::as_mut`] for safety concerns.
+ ///
+ /// # Note
+ ///
+ /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match
+ /// those for the old `T` value, as the map will not re-evaluate where the new
+ /// value should go, meaning the value may become "lost" if their location
+ /// does not reflect their state.
+ ///
+ /// [`NonNull::as_mut`]: https://doc.rust-lang.org/core/ptr/struct.NonNull.html#method.as_mut
+ /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html
+ /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # #[cfg(feature = "raw")]
+ /// # fn test() {
+ /// use core::hash::{BuildHasher, Hash};
+ /// use hashbrown::raw::{Bucket, RawTable};
+ ///
+ /// type NewHashBuilder = core::hash::BuildHasherDefault<ahash::AHasher>;
+ ///
+ /// fn make_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
+ /// use core::hash::Hasher;
+ /// let mut state = hash_builder.build_hasher();
+ /// key.hash(&mut state);
+ /// state.finish()
+ /// }
+ ///
+ /// let hash_builder = NewHashBuilder::default();
+ /// let mut table = RawTable::new();
+ ///
+ /// let value: (&str, String) = ("A pony", "is a small horse".to_owned());
+ /// let hash = make_hash(&hash_builder, &value.0);
+ ///
+ /// table.insert(hash, value.clone(), |val| make_hash(&hash_builder, &val.0));
+ ///
+ /// let bucket: Bucket<(&str, String)> = table.find(hash, |(k, _)| k == &value.0).unwrap();
+ ///
+ /// unsafe {
+ /// bucket
+ /// .as_mut()
+ /// .1
+ /// .push_str(" less than 147 cm at the withers")
+ /// };
+ /// assert_eq!(
+ /// unsafe { bucket.as_ref() },
+ /// &(
+ /// "A pony",
+ /// "is a small horse less than 147 cm at the withers".to_owned()
+ /// )
+ /// );
+ /// # }
+ /// # fn main() {
+ /// # #[cfg(feature = "raw")]
+ /// # test()
+ /// # }
+ /// ```
#[inline]
pub unsafe fn as_mut<'a>(&self) -> &'a mut T {
&mut *self.as_ptr()
}
+
+ /// Copies `size_of<T>` bytes from `other` to `self`. The source
+ /// and destination may *not* overlap.
+ ///
+ /// # Safety
+ ///
+ /// See [`ptr::copy_nonoverlapping`] for safety concerns.
+ ///
+ /// Like [`read`], `copy_nonoverlapping` creates a bitwise copy of `T`, regardless of
+ /// whether `T` is [`Copy`]. If `T` is not [`Copy`], using *both* the values
+ /// in the region beginning at `*self` and the region beginning at `*other` can
+ /// [violate memory safety].
+ ///
+ /// # Note
+ ///
+ /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match
+ /// those for the old `T` value, as the map will not re-evaluate where the new
+ /// value should go, meaning the value may become "lost" if their location
+ /// does not reflect their state.
+ ///
+ /// [`ptr::copy_nonoverlapping`]: https://doc.rust-lang.org/core/ptr/fn.copy_nonoverlapping.html
+ /// [`read`]: https://doc.rust-lang.org/core/ptr/fn.read.html
+ /// [violate memory safety]: https://doc.rust-lang.org/std/ptr/fn.read.html#ownership-of-the-returned-value
+ /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html
+ /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html
#[cfg(feature = "raw")]
#[inline]
pub unsafe fn copy_from_nonoverlapping(&self, other: &Self) {
@@ -516,9 +923,9 @@ impl<T, A: Allocator + Clone> RawTable<T, A> {
/// Returns pointer to start of data table.
#[inline]
- #[cfg(feature = "nightly")]
- pub unsafe fn data_start(&self) -> *mut T {
- self.data_end().as_ptr().wrapping_sub(self.buckets())
+ #[cfg(any(feature = "raw", feature = "nightly"))]
+ pub unsafe fn data_start(&self) -> NonNull<T> {
+ NonNull::new_unchecked(self.data_end().as_ptr().wrapping_sub(self.buckets()))
}
/// Return the information about memory allocated by the table.
@@ -581,11 +988,18 @@ impl<T, A: Allocator + Clone> RawTable<T, A> {
}
/// Removes an element from the table, returning it.
+ ///
+ /// This also returns an `InsertSlot` pointing to the newly free bucket.
#[cfg_attr(feature = "inline-more", inline)]
#[allow(clippy::needless_pass_by_value)]
- pub unsafe fn remove(&mut self, item: Bucket<T>) -> T {
+ pub unsafe fn remove(&mut self, item: Bucket<T>) -> (T, InsertSlot) {
self.erase_no_drop(&item);
- item.read()
+ (
+ item.read(),
+ InsertSlot {
+ index: self.bucket_index(&item),
+ },
+ )
}
/// Finds and removes an element from the table, returning it.
@@ -593,7 +1007,7 @@ impl<T, A: Allocator + Clone> RawTable<T, A> {
pub fn remove_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<T> {
// Avoid `Option::map` because it bloats LLVM IR.
match self.find(hash, eq) {
- Some(bucket) => Some(unsafe { self.remove(bucket) }),
+ Some(bucket) => Some(unsafe { self.remove(bucket).0 }),
None => None,
}
}
@@ -607,6 +1021,10 @@ impl<T, A: Allocator + Clone> RawTable<T, A> {
/// Removes all elements from the table without freeing the backing memory.
#[cfg_attr(feature = "inline-more", inline)]
pub fn clear(&mut self) {
+ if self.is_empty() {
+ // Special case empty table to avoid surprising O(capacity) time.
+ return;
+ }
// Ensure that the table is reset even if one of the drops panic
let mut self_ = guard(self, |self_| self_.clear_no_drop());
unsafe {
@@ -663,7 +1081,7 @@ impl<T, A: Allocator + Clone> RawTable<T, A> {
/// without reallocation.
#[cfg_attr(feature = "inline-more", inline)]
pub fn reserve(&mut self, additional: usize, hasher: impl Fn(&T) -> u64) {
- if additional > self.table.growth_left {
+ if unlikely(additional > self.table.growth_left) {
// Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
if self
.reserve_rehash(additional, hasher, Fallibility::Infallible)
@@ -737,22 +1155,18 @@ impl<T, A: Allocator + Clone> RawTable<T, A> {
#[cfg_attr(feature = "inline-more", inline)]
pub fn insert(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> Bucket<T> {
unsafe {
- let mut index = self.table.find_insert_slot(hash);
+ let mut slot = self.table.find_insert_slot(hash);
// We can avoid growing the table once we have reached our load
// factor if we are replacing a tombstone. This works since the
// number of EMPTY slots does not change in this case.
- let old_ctrl = *self.table.ctrl(index);
+ let old_ctrl = *self.table.ctrl(slot.index);
if unlikely(self.table.growth_left == 0 && special_is_empty(old_ctrl)) {
self.reserve(1, hasher);
- index = self.table.find_insert_slot(hash);
+ slot = self.table.find_insert_slot(hash);
}
- self.table.record_item_insert_at(index, old_ctrl, hash);
-
- let bucket = self.bucket(index);
- bucket.write(value);
- bucket
+ self.insert_in_slot(hash, slot, value)
}
}
@@ -820,7 +1234,7 @@ impl<T, A: Allocator + Clone> RawTable<T, A> {
let old_ctrl = *self.table.ctrl(index);
debug_assert!(self.is_bucket_full(index));
let old_growth_left = self.table.growth_left;
- let item = self.remove(bucket);
+ let item = self.remove(bucket).0;
if let Some(new_item) = f(item) {
self.table.growth_left = old_growth_left;
self.table.set_ctrl(index, old_ctrl);
@@ -832,6 +1246,49 @@ impl<T, A: Allocator + Clone> RawTable<T, A> {
}
}
+ /// Searches for an element in the table. If the element is not found,
+ /// returns `Err` with the position of a slot where an element with the
+ /// same hash could be inserted.
+ ///
+ /// This function may resize the table if additional space is required for
+ /// inserting an element.
+ #[inline]
+ pub fn find_or_find_insert_slot(
+ &mut self,
+ hash: u64,
+ mut eq: impl FnMut(&T) -> bool,
+ hasher: impl Fn(&T) -> u64,
+ ) -> Result<Bucket<T>, InsertSlot> {
+ self.reserve(1, hasher);
+
+ match self
+ .table
+ .find_or_find_insert_slot_inner(hash, &mut |index| unsafe {
+ eq(self.bucket(index).as_ref())
+ }) {
+ Ok(index) => Ok(unsafe { self.bucket(index) }),
+ Err(slot) => Err(slot),
+ }
+ }
+
+ /// Inserts a new element into the table in the given slot, and returns its
+ /// raw bucket.
+ ///
+ /// # Safety
+ ///
+ /// `slot` must point to a slot previously returned by
+ /// `find_or_find_insert_slot`, and no mutation of the table must have
+ /// occurred since that call.
+ #[inline]
+ pub unsafe fn insert_in_slot(&mut self, hash: u64, slot: InsertSlot, value: T) -> Bucket<T> {
+ let old_ctrl = *self.table.ctrl(slot.index);
+ self.table.record_item_insert_at(slot.index, old_ctrl, hash);
+
+ let bucket = self.bucket(slot.index);
+ bucket.write(value);
+ bucket
+ }
+
/// Searches for an element in the table.
#[inline]
pub fn find(&self, hash: u64, mut eq: impl FnMut(&T) -> bool) -> Option<Bucket<T>> {
@@ -984,7 +1441,7 @@ impl<T, A: Allocator + Clone> RawTable<T, A> {
/// `RawIterHash` struct, we have to make the `iter_hash` method unsafe.
#[cfg_attr(feature = "inline-more", inline)]
#[cfg(feature = "raw")]
- pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash<'_, T, A> {
+ pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash<T> {
RawIterHash::new(self, hash)
}
@@ -1072,6 +1529,11 @@ where
}
impl<A> RawTableInner<A> {
+ /// Creates a new empty hash table without allocating any memory.
+ ///
+ /// In effect this returns a table with exactly 1 bucket. However we can
+ /// leave the data pointer dangling since that bucket is never accessed
+ /// due to our load factor forcing us to always have at least 1 free bucket.
#[inline]
const fn new_in(alloc: A) -> Self {
Self {
@@ -1086,6 +1548,18 @@ impl<A> RawTableInner<A> {
}
impl<A: Allocator + Clone> RawTableInner<A> {
+ /// Allocates a new [`RawTableInner`] with the given number of buckets.
+ /// The control bytes and buckets are left uninitialized.
+ ///
+ /// # Safety
+ ///
+ /// The caller of this function must ensure that the `buckets` is power of two
+ /// and also initialize all control bytes of the length `self.bucket_mask + 1 +
+ /// Group::WIDTH` with the [`EMPTY`] bytes.
+ ///
+ /// See also [`Allocator`] API for other safety concerns.
+ ///
+ /// [`Allocator`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html
#[cfg_attr(feature = "inline-more", inline)]
unsafe fn new_uninitialized(
alloc: A,
@@ -1106,6 +1580,7 @@ impl<A: Allocator + Clone> RawTableInner<A> {
Err(_) => return Err(fallibility.alloc_err(layout)),
};
+ // SAFETY: null pointer will be caught in above check
let ctrl = NonNull::new_unchecked(ptr.as_ptr().add(ctrl_offset));
Ok(Self {
ctrl,
@@ -1116,6 +1591,10 @@ impl<A: Allocator + Clone> RawTableInner<A> {
})
}
+ /// Attempts to allocate a new [`RawTableInner`] with at least enough
+ /// capacity for inserting the given number of elements without reallocating.
+ ///
+ /// All the control bytes are initialized with the [`EMPTY`] bytes.
#[inline]
fn fallible_with_capacity(
alloc: A,
@@ -1126,11 +1605,16 @@ impl<A: Allocator + Clone> RawTableInner<A> {
if capacity == 0 {
Ok(Self::new_in(alloc))
} else {
+ // SAFETY: We checked that we could successfully allocate the new table, and then
+ // initialized all control bytes with the constant `EMPTY` byte.
unsafe {
let buckets =
capacity_to_buckets(capacity).ok_or_else(|| fallibility.capacity_overflow())?;
let result = Self::new_uninitialized(alloc, table_layout, buckets, fallibility)?;
+ // SAFETY: We checked that the table is allocated and therefore the table already has
+ // `self.bucket_mask + 1 + Group::WIDTH` number of control bytes (see TableLayout::calculate_layout_for)
+ // so writing `self.num_ctrl_bytes() == bucket_mask + 1 + Group::WIDTH` bytes is safe.
result.ctrl(0).write_bytes(EMPTY, result.num_ctrl_bytes());
Ok(result)
@@ -1138,66 +1622,200 @@ impl<A: Allocator + Clone> RawTableInner<A> {
}
}
+ /// Fixes up an insertion slot due to false positives for groups smaller than the group width.
+ /// This must only be used on insertion slots found by `find_insert_slot_in_group`.
+ #[inline]
+ unsafe fn fix_insert_slot(&self, mut index: usize) -> InsertSlot {
+ // In tables smaller than the group width
+ // (self.buckets() < Group::WIDTH), trailing control
+ // bytes outside the range of the table are filled with
+ // EMPTY entries. These will unfortunately trigger a
+ // match, but once masked may point to a full bucket that
+ // is already occupied. We detect this situation here and
+ // perform a second scan starting at the beginning of the
+ // table. This second scan is guaranteed to find an empty
+ // slot (due to the load factor) before hitting the trailing
+ // control bytes (containing EMPTY).
+ if unlikely(self.is_bucket_full(index)) {
+ debug_assert!(self.bucket_mask < Group::WIDTH);
+ // SAFETY:
+ //
+ // * We are in range and `ptr = self.ctrl(0)` are valid for reads
+ // and properly aligned, because the table is already allocated
+ // (see `TableLayout::calculate_layout_for` and `ptr::read`);
+ //
+ // * For tables larger than the group width (self.buckets() >= Group::WIDTH),
+ // we will never end up in the given branch, since
+ // `(probe_seq.pos + bit) & self.bucket_mask` in `find_insert_slot_in_group` cannot
+ // return a full bucket index. For tables smaller than the group width, calling the
+ // `unwrap_unchecked` function is also
+ // safe, as the trailing control bytes outside the range of the table are filled
+ // with EMPTY bytes, so this second scan either finds an empty slot (due to the
+ // load factor) or hits the trailing control bytes (containing EMPTY).
+ index = Group::load_aligned(self.ctrl(0))
+ .match_empty_or_deleted()
+ .lowest_set_bit()
+ .unwrap_unchecked();
+ }
+ InsertSlot { index }
+ }
+
+ /// Finds the position to insert something in a group.
+ /// This may have false positives and must be fixed up with `fix_insert_slot` before it's used.
+ #[inline]
+ fn find_insert_slot_in_group(&self, group: &Group, probe_seq: &ProbeSeq) -> Option<usize> {
+ let bit = group.match_empty_or_deleted().lowest_set_bit();
+
+ if likely(bit.is_some()) {
+ Some((probe_seq.pos + bit.unwrap()) & self.bucket_mask)
+ } else {
+ None
+ }
+ }
+
+ /// Searches for an element in the table, or a potential slot where that element could be
+ /// inserted.
+ ///
+ /// This uses dynamic dispatch to reduce the amount of code generated, but that is
+ /// eliminated by LLVM optimizations.
+ #[inline]
+ fn find_or_find_insert_slot_inner(
+ &self,
+ hash: u64,
+ eq: &mut dyn FnMut(usize) -> bool,
+ ) -> Result<usize, InsertSlot> {
+ let mut insert_slot = None;
+
+ let h2_hash = h2(hash);
+ let mut probe_seq = self.probe_seq(hash);
+
+ loop {
+ let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) };
+
+ for bit in group.match_byte(h2_hash) {
+ let index = (probe_seq.pos + bit) & self.bucket_mask;
+
+ if likely(eq(index)) {
+ return Ok(index);
+ }
+ }
+
+ // We didn't find the element we were looking for in the group, try to get an
+ // insertion slot from the group if we don't have one yet.
+ if likely(insert_slot.is_none()) {
+ insert_slot = self.find_insert_slot_in_group(&group, &probe_seq);
+ }
+
+ // Only stop the search if the group contains at least one empty element.
+ // Otherwise, the element that we are looking for might be in a following group.
+ if likely(group.match_empty().any_bit_set()) {
+ // We must have found a insert slot by now, since the current group contains at
+ // least one. For tables smaller than the group width, there will still be an
+ // empty element in the current (and only) group due to the load factor.
+ unsafe {
+ return Err(self.fix_insert_slot(insert_slot.unwrap_unchecked()));
+ }
+ }
+
+ probe_seq.move_next(self.bucket_mask);
+ }
+ }
+
/// Searches for an empty or deleted bucket which is suitable for inserting
/// a new element and sets the hash for that slot.
///
/// There must be at least 1 empty bucket in the table.
#[inline]
unsafe fn prepare_insert_slot(&self, hash: u64) -> (usize, u8) {
- let index = self.find_insert_slot(hash);
+ let index = self.find_insert_slot(hash).index;
let old_ctrl = *self.ctrl(index);
self.set_ctrl_h2(index, hash);
(index, old_ctrl)
}
/// Searches for an empty or deleted bucket which is suitable for inserting
- /// a new element.
+ /// a new element, returning the `index` for the new [`Bucket`].
///
- /// There must be at least 1 empty bucket in the table.
+ /// This function does not make any changes to the `data` part of the table, or any
+ /// changes to the `items` or `growth_left` field of the table.
+ ///
+ /// The table must have at least 1 empty or deleted `bucket`, otherwise this function
+ /// will never return (will go into an infinite loop) for tables larger than the group
+ /// width, or return an index outside of the table indices range if the table is less
+ /// than the group width.
+ ///
+ /// # Note
+ ///
+ /// Calling this function is always safe, but attempting to write data at
+ /// the index returned by this function when the table is less than the group width
+ /// and if there was not at least one empty bucket in the table will cause immediate
+ /// [`undefined behavior`]. This is because in this case the function will return
+ /// `self.bucket_mask + 1` as an index due to the trailing EMPTY control bytes outside
+ /// the table range.
+ ///
+ /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
#[inline]
- fn find_insert_slot(&self, hash: u64) -> usize {
+ fn find_insert_slot(&self, hash: u64) -> InsertSlot {
let mut probe_seq = self.probe_seq(hash);
loop {
+ // SAFETY:
+ // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1`
+ // of the table due to masking with `self.bucket_mask` and also because mumber of
+ // buckets is a power of two (see comment for masking below).
+ //
+ // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to
+ // call `Group::load` due to the extended control bytes range, which is
+ // `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control
+ // byte will never be read for the allocated table);
+ //
+ // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will
+ // always return "0" (zero), so Group::load will read unaligned `Group::static_empty()`
+ // bytes, which is safe (see RawTableInner::new_in).
unsafe {
let group = Group::load(self.ctrl(probe_seq.pos));
- if let Some(bit) = group.match_empty_or_deleted().lowest_set_bit() {
- let result = (probe_seq.pos + bit) & self.bucket_mask;
-
- // In tables smaller than the group width, trailing control
- // bytes outside the range of the table are filled with
- // EMPTY entries. These will unfortunately trigger a
- // match, but once masked may point to a full bucket that
- // is already occupied. We detect this situation here and
- // perform a second scan starting at the beginning of the
- // table. This second scan is guaranteed to find an empty
- // slot (due to the load factor) before hitting the trailing
- // control bytes (containing EMPTY).
- if unlikely(self.is_bucket_full(result)) {
- debug_assert!(self.bucket_mask < Group::WIDTH);
- debug_assert_ne!(probe_seq.pos, 0);
- return Group::load_aligned(self.ctrl(0))
- .match_empty_or_deleted()
- .lowest_set_bit_nonzero();
- }
+ let index = self.find_insert_slot_in_group(&group, &probe_seq);
- return result;
+ if likely(index.is_some()) {
+ return self.fix_insert_slot(index.unwrap_unchecked());
}
}
probe_seq.move_next(self.bucket_mask);
}
}
- /// Searches for an element in the table. This uses dynamic dispatch to reduce the amount of
- /// code generated, but it is eliminated by LLVM optimizations.
+ /// Searches for an element in a table, returning the `index` of the found element.
+ /// This uses dynamic dispatch to reduce the amount of code generated, but it is
+ /// eliminated by LLVM optimizations.
+ ///
+ /// This function does not make any changes to the `data` part of the table, or any
+ /// changes to the `items` or `growth_left` field of the table.
+ ///
+ /// The table must have at least 1 empty `bucket`, otherwise, if the
+ /// `eq: &mut dyn FnMut(usize) -> bool` function does not return `true`,
+ /// this function will also never return (will go into an infinite loop).
#[inline(always)]
fn find_inner(&self, hash: u64, eq: &mut dyn FnMut(usize) -> bool) -> Option<usize> {
let h2_hash = h2(hash);
let mut probe_seq = self.probe_seq(hash);
loop {
+ // SAFETY:
+ // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1`
+ // of the table due to masking with `self.bucket_mask`.
+ //
+ // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to
+ // call `Group::load` due to the extended control bytes range, which is
+ // `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control
+ // byte will never be read for the allocated table);
+ //
+ // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will
+ // always return "0" (zero), so Group::load will read unaligned `Group::static_empty()`
+ // bytes, which is safe (see RawTableInner::new_in).
let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) };
for bit in group.match_byte(h2_hash) {
+ // This is the same as `(probe_seq.pos + bit) % self.buckets()` because the number
+ // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`.
let index = (probe_seq.pos + bit) & self.bucket_mask;
if likely(eq(index)) {
@@ -1213,12 +1831,49 @@ impl<A: Allocator + Clone> RawTableInner<A> {
}
}
+ /// Prepares for rehashing data in place (that is, without allocating new memory).
+ /// Converts all full index `control bytes` to `DELETED` and all `DELETED` control
+ /// bytes to `EMPTY`, i.e. performs the following conversion:
+ ///
+ /// - `EMPTY` control bytes -> `EMPTY`;
+ /// - `DELETED` control bytes -> `EMPTY`;
+ /// - `FULL` control bytes -> `DELETED`.
+ ///
+ /// This function does not make any changes to the `data` parts of the table,
+ /// or any changes to the the `items` or `growth_left` field of the table.
+ ///
+ /// # Safety
+ ///
+ /// You must observe the following safety rules when calling this function:
+ ///
+ /// * The [`RawTableInner`] has already been allocated;
+ ///
+ /// * The caller of this function must convert the `DELETED` bytes back to `FULL`
+ /// bytes when re-inserting them into their ideal position (which was impossible
+ /// to do during the first insert due to tombstones). If the caller does not do
+ /// this, then calling this function may result in a memory leak.
+ ///
+ /// Calling this function on a table that has not been allocated results in
+ /// [`undefined behavior`].
+ ///
+ /// See also [`Bucket::as_ptr`] method, for more information about of properly removing
+ /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`].
+ ///
+ /// [`Bucket::as_ptr`]: Bucket::as_ptr
+ /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
#[allow(clippy::mut_mut)]
#[inline]
unsafe fn prepare_rehash_in_place(&mut self) {
- // Bulk convert all full control bytes to DELETED, and all DELETED
- // control bytes to EMPTY. This effectively frees up all buckets
- // containing a DELETED entry.
+ // Bulk convert all full control bytes to DELETED, and all DELETED control bytes to EMPTY.
+ // This effectively frees up all buckets containing a DELETED entry.
+ //
+ // SAFETY:
+ // 1. `i` is guaranteed to be within bounds since we are iterating from zero to `buckets - 1`;
+ // 2. Even if `i` will be `i == self.bucket_mask`, it is safe to call `Group::load_aligned`
+ // due to the extended control bytes range, which is `self.bucket_mask + 1 + Group::WIDTH`;
+ // 3. The caller of this function guarantees that [`RawTableInner`] has already been allocated;
+ // 4. We can use `Group::load_aligned` and `Group::store_aligned` here since we start from 0
+ // and go to the end with a step equal to `Group::WIDTH` (see TableLayout::calculate_layout_for).
for i in (0..self.buckets()).step_by(Group::WIDTH) {
let group = Group::load_aligned(self.ctrl(i));
let group = group.convert_special_to_empty_and_full_to_deleted();
@@ -1227,10 +1882,19 @@ impl<A: Allocator + Clone> RawTableInner<A> {
// Fix up the trailing control bytes. See the comments in set_ctrl
// for the handling of tables smaller than the group width.
- if self.buckets() < Group::WIDTH {
+ //
+ // SAFETY: The caller of this function guarantees that [`RawTableInner`]
+ // has already been allocated
+ if unlikely(self.buckets() < Group::WIDTH) {
+ // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of control bytes,
+ // so copying `self.buckets() == self.bucket_mask + 1` bytes with offset equal to
+ // `Group::WIDTH` is safe
self.ctrl(0)
.copy_to(self.ctrl(Group::WIDTH), self.buckets());
} else {
+ // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of
+ // control bytes,so copying `Group::WIDTH` bytes with offset equal
+ // to `self.buckets() == self.bucket_mask + 1` is safe
self.ctrl(0)
.copy_to(self.ctrl(self.buckets()), Group::WIDTH);
}
@@ -1274,7 +1938,7 @@ impl<A: Allocator + Clone> RawTableInner<A> {
#[cfg(feature = "raw")]
#[inline]
unsafe fn prepare_insert_no_grow(&mut self, hash: u64) -> Result<usize, ()> {
- let index = self.find_insert_slot(hash);
+ let index = self.find_insert_slot(hash).index;
let old_ctrl = *self.ctrl(index);
if unlikely(self.growth_left == 0 && special_is_empty(old_ctrl)) {
Err(())
@@ -1301,13 +1965,68 @@ impl<A: Allocator + Clone> RawTableInner<A> {
/// Sets a control byte to the hash, and possibly also the replicated control byte at
/// the end of the array.
+ ///
+ /// This function does not make any changes to the `data` parts of the table,
+ /// or any changes to the the `items` or `growth_left` field of the table.
+ ///
+ /// # Safety
+ ///
+ /// The safety rules are directly derived from the safety rules for [`RawTableInner::set_ctrl`]
+ /// method. Thus, in order to uphold the safety contracts for the method, you must observe the
+ /// following rules when calling this function:
+ ///
+ /// * The [`RawTableInner`] has already been allocated;
+ ///
+ /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e.
+ /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must
+ /// be no greater than the number returned by the function [`RawTableInner::buckets`].
+ ///
+ /// Calling this function on a table that has not been allocated results in [`undefined behavior`].
+ ///
+ /// See also [`Bucket::as_ptr`] method, for more information about of properly removing
+ /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`].
+ ///
+ /// [`RawTableInner::set_ctrl`]: RawTableInner::set_ctrl
+ /// [`RawTableInner::buckets`]: RawTableInner::buckets
+ /// [`Bucket::as_ptr`]: Bucket::as_ptr
+ /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
#[inline]
unsafe fn set_ctrl_h2(&self, index: usize, hash: u64) {
+ // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::set_ctrl_h2`]
self.set_ctrl(index, h2(hash));
}
+ /// Replaces the hash in the control byte at the given index with the provided one,
+ /// and possibly also replicates the new control byte at the end of the array of control
+ /// bytes, returning the old control byte.
+ ///
+ /// This function does not make any changes to the `data` parts of the table,
+ /// or any changes to the the `items` or `growth_left` field of the table.
+ ///
+ /// # Safety
+ ///
+ /// The safety rules are directly derived from the safety rules for [`RawTableInner::set_ctrl_h2`]
+ /// and [`RawTableInner::ctrl`] methods. Thus, in order to uphold the safety contracts for both
+ /// methods, you must observe the following rules when calling this function:
+ ///
+ /// * The [`RawTableInner`] has already been allocated;
+ ///
+ /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e.
+ /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must
+ /// be no greater than the number returned by the function [`RawTableInner::buckets`].
+ ///
+ /// Calling this function on a table that has not been allocated results in [`undefined behavior`].
+ ///
+ /// See also [`Bucket::as_ptr`] method, for more information about of properly removing
+ /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`].
+ ///
+ /// [`RawTableInner::set_ctrl_h2`]: RawTableInner::set_ctrl_h2
+ /// [`RawTableInner::buckets`]: RawTableInner::buckets
+ /// [`Bucket::as_ptr`]: Bucket::as_ptr
+ /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
#[inline]
unsafe fn replace_ctrl_h2(&self, index: usize, hash: u64) -> u8 {
+ // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::replace_ctrl_h2`]
let prev_ctrl = *self.ctrl(index);
self.set_ctrl_h2(index, hash);
prev_ctrl
@@ -1315,6 +2034,28 @@ impl<A: Allocator + Clone> RawTableInner<A> {
/// Sets a control byte, and possibly also the replicated control byte at
/// the end of the array.
+ ///
+ /// This function does not make any changes to the `data` parts of the table,
+ /// or any changes to the the `items` or `growth_left` field of the table.
+ ///
+ /// # Safety
+ ///
+ /// You must observe the following safety rules when calling this function:
+ ///
+ /// * The [`RawTableInner`] has already been allocated;
+ ///
+ /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e.
+ /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must
+ /// be no greater than the number returned by the function [`RawTableInner::buckets`].
+ ///
+ /// Calling this function on a table that has not been allocated results in [`undefined behavior`].
+ ///
+ /// See also [`Bucket::as_ptr`] method, for more information about of properly removing
+ /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`].
+ ///
+ /// [`RawTableInner::buckets`]: RawTableInner::buckets
+ /// [`Bucket::as_ptr`]: Bucket::as_ptr
+ /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
#[inline]
unsafe fn set_ctrl(&self, index: usize, ctrl: u8) {
// Replicate the first Group::WIDTH control bytes at the end of
@@ -1335,16 +2076,43 @@ impl<A: Allocator + Clone> RawTableInner<A> {
// ---------------------------------------------
// | [A] | [B] | [EMPTY] | [EMPTY] | [A] | [B] |
// ---------------------------------------------
+
+ // This is the same as `(index.wrapping_sub(Group::WIDTH)) % self.buckets() + Group::WIDTH`
+ // because the number of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`.
let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH;
+ // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::set_ctrl`]
*self.ctrl(index) = ctrl;
*self.ctrl(index2) = ctrl;
}
/// Returns a pointer to a control byte.
+ ///
+ /// # Safety
+ ///
+ /// For the allocated [`RawTableInner`], the result is [`Undefined Behavior`],
+ /// if the `index` is greater than the `self.bucket_mask + 1 + Group::WIDTH`.
+ /// In that case, calling this function with `index == self.bucket_mask + 1 + Group::WIDTH`
+ /// will return a pointer to the end of the allocated table and it is useless on its own.
+ ///
+ /// Calling this function with `index >= self.bucket_mask + 1 + Group::WIDTH` on a
+ /// table that has not been allocated results in [`Undefined Behavior`].
+ ///
+ /// So to satisfy both requirements you should always follow the rule that
+ /// `index < self.bucket_mask + 1 + Group::WIDTH`
+ ///
+ /// Calling this function on [`RawTableInner`] that are not already allocated is safe
+ /// for read-only purpose.
+ ///
+ /// See also [`Bucket::as_ptr()`] method, for more information about of properly removing
+ /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`].
+ ///
+ /// [`Bucket::as_ptr()`]: Bucket::as_ptr()
+ /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
#[inline]
unsafe fn ctrl(&self, index: usize) -> *mut u8 {
debug_assert!(index < self.num_ctrl_bytes());
+ // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::ctrl`]
self.ctrl.as_ptr().add(index)
}
@@ -1541,7 +2309,7 @@ impl<A: Allocator + Clone> RawTableInner<A> {
let hash = hasher(*guard, i);
// Search for a suitable place to put it
- let new_i = guard.find_insert_slot(hash);
+ let new_i = guard.find_insert_slot(hash).index;
// Probing works by scanning through all of the control
// bytes in groups, which may not be aligned to the group
@@ -1626,27 +2394,95 @@ impl<A: Allocator + Clone> RawTableInner<A> {
self.growth_left = bucket_mask_to_capacity(self.bucket_mask);
}
+ /// Erases the [`Bucket`]'s control byte at the given index so that it does not
+ /// triggered as full, decreases the `items` of the table and, if it can be done,
+ /// increases `self.growth_left`.
+ ///
+ /// This function does not actually erase / drop the [`Bucket`] itself, i.e. it
+ /// does not make any changes to the `data` parts of the table. The caller of this
+ /// function must take care to properly drop the `data`, otherwise calling this
+ /// function may result in a memory leak.
+ ///
+ /// # Safety
+ ///
+ /// You must observe the following safety rules when calling this function:
+ ///
+ /// * The [`RawTableInner`] has already been allocated;
+ ///
+ /// * It must be the full control byte at the given position;
+ ///
+ /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e.
+ /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must
+ /// be no greater than the number returned by the function [`RawTableInner::buckets`].
+ ///
+ /// Calling this function on a table that has not been allocated results in [`undefined behavior`].
+ ///
+ /// Calling this function on a table with no elements is unspecified, but calling subsequent
+ /// functions is likely to result in [`undefined behavior`] due to overflow subtraction
+ /// (`self.items -= 1 cause overflow when self.items == 0`).
+ ///
+ /// See also [`Bucket::as_ptr`] method, for more information about of properly removing
+ /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`].
+ ///
+ /// [`RawTableInner::buckets`]: RawTableInner::buckets
+ /// [`Bucket::as_ptr`]: Bucket::as_ptr
+ /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
#[inline]
unsafe fn erase(&mut self, index: usize) {
debug_assert!(self.is_bucket_full(index));
+
+ // This is the same as `index.wrapping_sub(Group::WIDTH) % self.buckets()` because
+ // the number of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`.
let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask;
+ // SAFETY:
+ // - The caller must uphold the safety contract for `erase` method;
+ // - `index_before` is guaranteed to be in range due to masking with `self.bucket_mask`
let empty_before = Group::load(self.ctrl(index_before)).match_empty();
let empty_after = Group::load(self.ctrl(index)).match_empty();
- // If we are inside a continuous block of Group::WIDTH full or deleted
- // cells then a probe window may have seen a full block when trying to
- // insert. We therefore need to keep that block non-empty so that
- // lookups will continue searching to the next probe window.
+ // Inserting and searching in the map is performed by two key functions:
+ //
+ // - The `find_insert_slot` function that looks up the index of any `EMPTY` or `DELETED`
+ // slot in a group to be able to insert. If it doesn't find an `EMPTY` or `DELETED`
+ // slot immediately in the first group, it jumps to the next `Group` looking for it,
+ // and so on until it has gone through all the groups in the control bytes.
+ //
+ // - The `find_inner` function that looks for the index of the desired element by looking
+ // at all the `FULL` bytes in the group. If it did not find the element right away, and
+ // there is no `EMPTY` byte in the group, then this means that the `find_insert_slot`
+ // function may have found a suitable slot in the next group. Therefore, `find_inner`
+ // jumps further, and if it does not find the desired element and again there is no `EMPTY`
+ // byte, then it jumps further, and so on. The search stops only if `find_inner` function
+ // finds the desired element or hits an `EMPTY` slot/byte.
+ //
+ // Accordingly, this leads to two consequences:
//
- // Note that in this context `leading_zeros` refers to the bytes at the
- // end of a group, while `trailing_zeros` refers to the bytes at the
- // beginning of a group.
+ // - The map must have `EMPTY` slots (bytes);
+ //
+ // - You can't just mark the byte to be erased as `EMPTY`, because otherwise the `find_inner`
+ // function may stumble upon an `EMPTY` byte before finding the desired element and stop
+ // searching.
+ //
+ // Thus it is necessary to check all bytes after and before the erased element. If we are in
+ // a contiguous `Group` of `FULL` or `DELETED` bytes (the number of `FULL` or `DELETED` bytes
+ // before and after is greater than or equal to `Group::WIDTH`), then we must mark our byte as
+ // `DELETED` in order for the `find_inner` function to go further. On the other hand, if there
+ // is at least one `EMPTY` slot in the `Group`, then the `find_inner` function will still stumble
+ // upon an `EMPTY` byte, so we can safely mark our erased byte as `EMPTY` as well.
+ //
+ // Finally, since `index_before == (index.wrapping_sub(Group::WIDTH) & self.bucket_mask) == index`
+ // and given all of the above, tables smaller than the group width (self.buckets() < Group::WIDTH)
+ // cannot have `DELETED` bytes.
+ //
+ // Note that in this context `leading_zeros` refers to the bytes at the end of a group, while
+ // `trailing_zeros` refers to the bytes at the beginning of a group.
let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH {
DELETED
} else {
self.growth_left += 1;
EMPTY
};
+ // SAFETY: the caller must uphold the safety contract for `erase` method.
self.set_ctrl(index, ctrl);
self.items -= 1;
}
@@ -1752,7 +2588,8 @@ impl<T: Copy, A: Allocator + Clone> RawTableClone for RawTable<T, A> {
.copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes());
source
.data_start()
- .copy_to_nonoverlapping(self.data_start(), self.table.buckets());
+ .as_ptr()
+ .copy_to_nonoverlapping(self.data_start().as_ptr(), self.table.buckets());
self.table.items = source.table.items;
self.table.growth_left = source.table.growth_left;
@@ -1776,7 +2613,7 @@ impl<T: Clone, A: Allocator + Clone> RawTable<T, A> {
// to make sure we drop only the elements that have been
// cloned so far.
let mut guard = guard((0, &mut *self), |(index, self_)| {
- if Self::DATA_NEEDS_DROP && !self_.is_empty() {
+ if Self::DATA_NEEDS_DROP {
for i in 0..=*index {
if self_.is_bucket_full(i) {
self_.bucket(i).drop();
@@ -1896,7 +2733,7 @@ impl<T, A: Allocator + Clone> IntoIterator for RawTable<T, A> {
pub(crate) struct RawIterRange<T> {
// Mask of full buckets in the current group. Bits are cleared from this
// mask as each element is processed.
- current_group: BitMask,
+ current_group: BitMaskIter,
// Pointer to the buckets for the current group.
data: Bucket<T>,
@@ -1924,7 +2761,7 @@ impl<T> RawIterRange<T> {
let next_ctrl = ctrl.add(Group::WIDTH);
Self {
- current_group,
+ current_group: current_group.into_iter(),
data,
next_ctrl,
end,
@@ -1981,8 +2818,7 @@ impl<T> RawIterRange<T> {
#[cfg_attr(feature = "inline-more", inline)]
unsafe fn next_impl<const DO_CHECK_PTR_RANGE: bool>(&mut self) -> Option<Bucket<T>> {
loop {
- if let Some(index) = self.current_group.lowest_set_bit() {
- self.current_group = self.current_group.remove_lowest_bit();
+ if let Some(index) = self.current_group.next() {
return Some(self.data.next_n(index));
}
@@ -1995,7 +2831,7 @@ impl<T> RawIterRange<T> {
// than the group size where the trailing control bytes are all
// EMPTY. On larger tables self.end is guaranteed to be aligned
// to the group size (since tables are power-of-two sized).
- self.current_group = Group::load_aligned(self.next_ctrl).match_full();
+ self.current_group = Group::load_aligned(self.next_ctrl).match_full().into_iter();
self.data = self.data.next_n(Group::WIDTH);
self.next_ctrl = self.next_ctrl.add(Group::WIDTH);
}
@@ -2074,7 +2910,7 @@ impl<T> RawIter<T> {
/// This method should be called _before_ the removal is made. It is not necessary to call this
/// method if you are removing an item that this iterator yielded in the past.
#[cfg(feature = "raw")]
- pub fn reflect_remove(&mut self, b: &Bucket<T>) {
+ pub unsafe fn reflect_remove(&mut self, b: &Bucket<T>) {
self.reflect_toggle_full(b, false);
}
@@ -2088,36 +2924,76 @@ impl<T> RawIter<T> {
///
/// This method should be called _after_ the given insert is made.
#[cfg(feature = "raw")]
- pub fn reflect_insert(&mut self, b: &Bucket<T>) {
+ pub unsafe fn reflect_insert(&mut self, b: &Bucket<T>) {
self.reflect_toggle_full(b, true);
}
/// Refresh the iterator so that it reflects a change to the state of the given bucket.
#[cfg(feature = "raw")]
- fn reflect_toggle_full(&mut self, b: &Bucket<T>, is_insert: bool) {
- unsafe {
- if b.as_ptr() > self.iter.data.as_ptr() {
- // The iterator has already passed the bucket's group.
- // So the toggle isn't relevant to this iterator.
- return;
+ unsafe fn reflect_toggle_full(&mut self, b: &Bucket<T>, is_insert: bool) {
+ if b.as_ptr() > self.iter.data.as_ptr() {
+ // The iterator has already passed the bucket's group.
+ // So the toggle isn't relevant to this iterator.
+ return;
+ }
+
+ if self.iter.next_ctrl < self.iter.end
+ && b.as_ptr() <= self.iter.data.next_n(Group::WIDTH).as_ptr()
+ {
+ // The iterator has not yet reached the bucket's group.
+ // We don't need to reload anything, but we do need to adjust the item count.
+
+ if cfg!(debug_assertions) {
+ // Double-check that the user isn't lying to us by checking the bucket state.
+ // To do that, we need to find its control byte. We know that self.iter.data is
+ // at self.iter.next_ctrl - Group::WIDTH, so we work from there:
+ let offset = offset_from(self.iter.data.as_ptr(), b.as_ptr());
+ let ctrl = self.iter.next_ctrl.sub(Group::WIDTH).add(offset);
+ // This method should be called _before_ a removal, or _after_ an insert,
+ // so in both cases the ctrl byte should indicate that the bucket is full.
+ assert!(is_full(*ctrl));
}
- if self.iter.next_ctrl < self.iter.end
- && b.as_ptr() <= self.iter.data.next_n(Group::WIDTH).as_ptr()
- {
- // The iterator has not yet reached the bucket's group.
- // We don't need to reload anything, but we do need to adjust the item count.
+ if is_insert {
+ self.items += 1;
+ } else {
+ self.items -= 1;
+ }
- if cfg!(debug_assertions) {
- // Double-check that the user isn't lying to us by checking the bucket state.
- // To do that, we need to find its control byte. We know that self.iter.data is
- // at self.iter.next_ctrl - Group::WIDTH, so we work from there:
- let offset = offset_from(self.iter.data.as_ptr(), b.as_ptr());
- let ctrl = self.iter.next_ctrl.sub(Group::WIDTH).add(offset);
- // This method should be called _before_ a removal, or _after_ an insert,
- // so in both cases the ctrl byte should indicate that the bucket is full.
- assert!(is_full(*ctrl));
- }
+ return;
+ }
+
+ // The iterator is at the bucket group that the toggled bucket is in.
+ // We need to do two things:
+ //
+ // - Determine if the iterator already yielded the toggled bucket.
+ // If it did, we're done.
+ // - Otherwise, update the iterator cached group so that it won't
+ // yield a to-be-removed bucket, or _will_ yield a to-be-added bucket.
+ // We'll also need to update the item count accordingly.
+ if let Some(index) = self.iter.current_group.0.lowest_set_bit() {
+ let next_bucket = self.iter.data.next_n(index);
+ if b.as_ptr() > next_bucket.as_ptr() {
+ // The toggled bucket is "before" the bucket the iterator would yield next. We
+ // therefore don't need to do anything --- the iterator has already passed the
+ // bucket in question.
+ //
+ // The item count must already be correct, since a removal or insert "prior" to
+ // the iterator's position wouldn't affect the item count.
+ } else {
+ // The removed bucket is an upcoming bucket. We need to make sure it does _not_
+ // get yielded, and also that it's no longer included in the item count.
+ //
+ // NOTE: We can't just reload the group here, both since that might reflect
+ // inserts we've already passed, and because that might inadvertently unset the
+ // bits for _other_ removals. If we do that, we'd have to also decrement the
+ // item count for those other bits that we unset. But the presumably subsequent
+ // call to reflect for those buckets might _also_ decrement the item count.
+ // Instead, we _just_ flip the bit for the particular bucket the caller asked
+ // us to reflect.
+ let our_bit = offset_from(self.iter.data.as_ptr(), b.as_ptr());
+ let was_full = self.iter.current_group.flip(our_bit);
+ debug_assert_ne!(was_full, is_insert);
if is_insert {
self.items += 1;
@@ -2125,60 +3001,18 @@ impl<T> RawIter<T> {
self.items -= 1;
}
- return;
- }
-
- // The iterator is at the bucket group that the toggled bucket is in.
- // We need to do two things:
- //
- // - Determine if the iterator already yielded the toggled bucket.
- // If it did, we're done.
- // - Otherwise, update the iterator cached group so that it won't
- // yield a to-be-removed bucket, or _will_ yield a to-be-added bucket.
- // We'll also need to update the item count accordingly.
- if let Some(index) = self.iter.current_group.lowest_set_bit() {
- let next_bucket = self.iter.data.next_n(index);
- if b.as_ptr() > next_bucket.as_ptr() {
- // The toggled bucket is "before" the bucket the iterator would yield next. We
- // therefore don't need to do anything --- the iterator has already passed the
- // bucket in question.
- //
- // The item count must already be correct, since a removal or insert "prior" to
- // the iterator's position wouldn't affect the item count.
- } else {
- // The removed bucket is an upcoming bucket. We need to make sure it does _not_
- // get yielded, and also that it's no longer included in the item count.
- //
- // NOTE: We can't just reload the group here, both since that might reflect
- // inserts we've already passed, and because that might inadvertently unset the
- // bits for _other_ removals. If we do that, we'd have to also decrement the
- // item count for those other bits that we unset. But the presumably subsequent
- // call to reflect for those buckets might _also_ decrement the item count.
- // Instead, we _just_ flip the bit for the particular bucket the caller asked
- // us to reflect.
- let our_bit = offset_from(self.iter.data.as_ptr(), b.as_ptr());
- let was_full = self.iter.current_group.flip(our_bit);
- debug_assert_ne!(was_full, is_insert);
-
- if is_insert {
- self.items += 1;
+ if cfg!(debug_assertions) {
+ if b.as_ptr() == next_bucket.as_ptr() {
+ // The removed bucket should no longer be next
+ debug_assert_ne!(self.iter.current_group.0.lowest_set_bit(), Some(index));
} else {
- self.items -= 1;
- }
-
- if cfg!(debug_assertions) {
- if b.as_ptr() == next_bucket.as_ptr() {
- // The removed bucket should no longer be next
- debug_assert_ne!(self.iter.current_group.lowest_set_bit(), Some(index));
- } else {
- // We should not have changed what bucket comes next.
- debug_assert_eq!(self.iter.current_group.lowest_set_bit(), Some(index));
- }
+ // We should not have changed what bucket comes next.
+ debug_assert_eq!(self.iter.current_group.0.lowest_set_bit(), Some(index));
}
}
- } else {
- // We must have already iterated past the removed item.
}
+ } else {
+ // We must have already iterated past the removed item.
}
}
@@ -2217,9 +3051,8 @@ impl<T> Iterator for RawIter<T> {
self.iter.next_impl::<false>()
};
- if nxt.is_some() {
- self.items -= 1;
- }
+ debug_assert!(nxt.is_some());
+ self.items -= 1;
nxt
}
@@ -2388,13 +3221,28 @@ impl<T, A: Allocator + Clone> FusedIterator for RawDrain<'_, T, A> {}
/// `RawTable` only stores 7 bits of the hash value, so this iterator may return
/// items that have a hash value different than the one provided. You should
/// always validate the returned values before using them.
-pub struct RawIterHash<'a, T, A: Allocator + Clone = Global> {
- inner: RawIterHashInner<'a, A>,
+///
+/// For maximum flexibility this iterator is not bound by a lifetime, but you
+/// must observe several rules when using it:
+/// - You must not free the hash table while iterating (including via growing/shrinking).
+/// - It is fine to erase a bucket that has been yielded by the iterator.
+/// - Erasing a bucket that has not yet been yielded by the iterator may still
+/// result in the iterator yielding that bucket.
+/// - It is unspecified whether an element inserted after the iterator was
+/// created will be yielded by that iterator.
+/// - The order in which the iterator yields buckets is unspecified and may
+/// change in the future.
+pub struct RawIterHash<T> {
+ inner: RawIterHashInner,
_marker: PhantomData<T>,
}
-struct RawIterHashInner<'a, A: Allocator + Clone> {
- table: &'a RawTableInner<A>,
+struct RawIterHashInner {
+ // See `RawTableInner`'s corresponding fields for details.
+ // We can't store a `*const RawTableInner` as it would get
+ // invalidated by the user calling `&mut` methods on `RawTable`.
+ bucket_mask: usize,
+ ctrl: NonNull<u8>,
// The top 7 bits of the hash.
h2_hash: u8,
@@ -2408,65 +3256,77 @@ struct RawIterHashInner<'a, A: Allocator + Clone> {
bitmask: BitMaskIter,
}
-impl<'a, T, A: Allocator + Clone> RawIterHash<'a, T, A> {
+impl<T> RawIterHash<T> {
#[cfg_attr(feature = "inline-more", inline)]
#[cfg(feature = "raw")]
- fn new(table: &'a RawTable<T, A>, hash: u64) -> Self {
+ unsafe fn new<A: Allocator + Clone>(table: &RawTable<T, A>, hash: u64) -> Self {
RawIterHash {
inner: RawIterHashInner::new(&table.table, hash),
_marker: PhantomData,
}
}
}
-impl<'a, A: Allocator + Clone> RawIterHashInner<'a, A> {
+impl RawIterHashInner {
#[cfg_attr(feature = "inline-more", inline)]
#[cfg(feature = "raw")]
- fn new(table: &'a RawTableInner<A>, hash: u64) -> Self {
- unsafe {
- let h2_hash = h2(hash);
- let probe_seq = table.probe_seq(hash);
- let group = Group::load(table.ctrl(probe_seq.pos));
- let bitmask = group.match_byte(h2_hash).into_iter();
-
- RawIterHashInner {
- table,
- h2_hash,
- probe_seq,
- group,
- bitmask,
- }
+ unsafe fn new<A: Allocator + Clone>(table: &RawTableInner<A>, hash: u64) -> Self {
+ let h2_hash = h2(hash);
+ let probe_seq = table.probe_seq(hash);
+ let group = Group::load(table.ctrl(probe_seq.pos));
+ let bitmask = group.match_byte(h2_hash).into_iter();
+
+ RawIterHashInner {
+ bucket_mask: table.bucket_mask,
+ ctrl: table.ctrl,
+ h2_hash,
+ probe_seq,
+ group,
+ bitmask,
}
}
}
-impl<'a, T, A: Allocator + Clone> Iterator for RawIterHash<'a, T, A> {
+impl<T> Iterator for RawIterHash<T> {
type Item = Bucket<T>;
fn next(&mut self) -> Option<Bucket<T>> {
unsafe {
match self.inner.next() {
- Some(index) => Some(self.inner.table.bucket(index)),
+ Some(index) => {
+ // Can't use `RawTable::bucket` here as we don't have
+ // an actual `RawTable` reference to use.
+ debug_assert!(index <= self.inner.bucket_mask);
+ let bucket = Bucket::from_base_index(self.inner.ctrl.cast(), index);
+ Some(bucket)
+ }
None => None,
}
}
}
}
-impl<'a, A: Allocator + Clone> Iterator for RawIterHashInner<'a, A> {
+impl Iterator for RawIterHashInner {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
unsafe {
loop {
if let Some(bit) = self.bitmask.next() {
- let index = (self.probe_seq.pos + bit) & self.table.bucket_mask;
+ let index = (self.probe_seq.pos + bit) & self.bucket_mask;
return Some(index);
}
if likely(self.group.match_empty().any_bit_set()) {
return None;
}
- self.probe_seq.move_next(self.table.bucket_mask);
- self.group = Group::load(self.table.ctrl(self.probe_seq.pos));
+ self.probe_seq.move_next(self.bucket_mask);
+
+ // Can't use `RawTableInner::ctrl` here as we don't have
+ // an actual `RawTableInner` reference to use.
+ let index = self.probe_seq.pos;
+ debug_assert!(index < self.bucket_mask + 1 + Group::WIDTH);
+ let group_ctrl = self.ctrl.as_ptr().add(index);
+
+ self.group = Group::load(group_ctrl);
self.bitmask = self.group.match_byte(self.h2_hash).into_iter();
}
}