summaryrefslogtreecommitdiffstats
path: root/vendor/libm/src/math/cbrtf.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/libm/src/math/cbrtf.rs')
-rw-r--r--vendor/libm/src/math/cbrtf.rs76
1 files changed, 76 insertions, 0 deletions
diff --git a/vendor/libm/src/math/cbrtf.rs b/vendor/libm/src/math/cbrtf.rs
new file mode 100644
index 000000000..6e589c099
--- /dev/null
+++ b/vendor/libm/src/math/cbrtf.rs
@@ -0,0 +1,76 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Debugged and optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* cbrtf(x)
+ * Return cube root of x
+ */
+
+use core::f32;
+
+const B1: u32 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */
+const B2: u32 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
+
+/// Cube root (f32)
+///
+/// Computes the cube root of the argument.
+#[inline]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn cbrtf(x: f32) -> f32 {
+ let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24
+
+ let mut r: f64;
+ let mut t: f64;
+ let mut ui: u32 = x.to_bits();
+ let mut hx: u32 = ui & 0x7fffffff;
+
+ if hx >= 0x7f800000 {
+ /* cbrt(NaN,INF) is itself */
+ return x + x;
+ }
+
+ /* rough cbrt to 5 bits */
+ if hx < 0x00800000 {
+ /* zero or subnormal? */
+ if hx == 0 {
+ return x; /* cbrt(+-0) is itself */
+ }
+ ui = (x * x1p24).to_bits();
+ hx = ui & 0x7fffffff;
+ hx = hx / 3 + B2;
+ } else {
+ hx = hx / 3 + B1;
+ }
+ ui &= 0x80000000;
+ ui |= hx;
+
+ /*
+ * First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In
+ * double precision so that its terms can be arranged for efficiency
+ * without causing overflow or underflow.
+ */
+ t = f32::from_bits(ui) as f64;
+ r = t * t * t;
+ t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r);
+
+ /*
+ * Second step Newton iteration to 47 bits. In double precision for
+ * efficiency and accuracy.
+ */
+ r = t * t * t;
+ t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r);
+
+ /* rounding to 24 bits is perfect in round-to-nearest mode */
+ t as f32
+}