summaryrefslogtreecommitdiffstats
path: root/vendor/libm/src/math/erff.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/libm/src/math/erff.rs')
-rw-r--r--vendor/libm/src/math/erff.rs229
1 files changed, 229 insertions, 0 deletions
diff --git a/vendor/libm/src/math/erff.rs b/vendor/libm/src/math/erff.rs
new file mode 100644
index 000000000..384052293
--- /dev/null
+++ b/vendor/libm/src/math/erff.rs
@@ -0,0 +1,229 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_erff.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{expf, fabsf};
+
+const ERX: f32 = 8.4506291151e-01; /* 0x3f58560b */
+/*
+ * Coefficients for approximation to erf on [0,0.84375]
+ */
+const EFX8: f32 = 1.0270333290e+00; /* 0x3f8375d4 */
+const PP0: f32 = 1.2837916613e-01; /* 0x3e0375d4 */
+const PP1: f32 = -3.2504209876e-01; /* 0xbea66beb */
+const PP2: f32 = -2.8481749818e-02; /* 0xbce9528f */
+const PP3: f32 = -5.7702702470e-03; /* 0xbbbd1489 */
+const PP4: f32 = -2.3763017452e-05; /* 0xb7c756b1 */
+const QQ1: f32 = 3.9791721106e-01; /* 0x3ecbbbce */
+const QQ2: f32 = 6.5022252500e-02; /* 0x3d852a63 */
+const QQ3: f32 = 5.0813062117e-03; /* 0x3ba68116 */
+const QQ4: f32 = 1.3249473704e-04; /* 0x390aee49 */
+const QQ5: f32 = -3.9602282413e-06; /* 0xb684e21a */
+/*
+ * Coefficients for approximation to erf in [0.84375,1.25]
+ */
+const PA0: f32 = -2.3621185683e-03; /* 0xbb1acdc6 */
+const PA1: f32 = 4.1485610604e-01; /* 0x3ed46805 */
+const PA2: f32 = -3.7220788002e-01; /* 0xbebe9208 */
+const PA3: f32 = 3.1834661961e-01; /* 0x3ea2fe54 */
+const PA4: f32 = -1.1089469492e-01; /* 0xbde31cc2 */
+const PA5: f32 = 3.5478305072e-02; /* 0x3d1151b3 */
+const PA6: f32 = -2.1663755178e-03; /* 0xbb0df9c0 */
+const QA1: f32 = 1.0642088205e-01; /* 0x3dd9f331 */
+const QA2: f32 = 5.4039794207e-01; /* 0x3f0a5785 */
+const QA3: f32 = 7.1828655899e-02; /* 0x3d931ae7 */
+const QA4: f32 = 1.2617121637e-01; /* 0x3e013307 */
+const QA5: f32 = 1.3637083583e-02; /* 0x3c5f6e13 */
+const QA6: f32 = 1.1984500103e-02; /* 0x3c445aa3 */
+/*
+ * Coefficients for approximation to erfc in [1.25,1/0.35]
+ */
+const RA0: f32 = -9.8649440333e-03; /* 0xbc21a093 */
+const RA1: f32 = -6.9385856390e-01; /* 0xbf31a0b7 */
+const RA2: f32 = -1.0558626175e+01; /* 0xc128f022 */
+const RA3: f32 = -6.2375331879e+01; /* 0xc2798057 */
+const RA4: f32 = -1.6239666748e+02; /* 0xc322658c */
+const RA5: f32 = -1.8460508728e+02; /* 0xc3389ae7 */
+const RA6: f32 = -8.1287437439e+01; /* 0xc2a2932b */
+const RA7: f32 = -9.8143291473e+00; /* 0xc11d077e */
+const SA1: f32 = 1.9651271820e+01; /* 0x419d35ce */
+const SA2: f32 = 1.3765776062e+02; /* 0x4309a863 */
+const SA3: f32 = 4.3456588745e+02; /* 0x43d9486f */
+const SA4: f32 = 6.4538726807e+02; /* 0x442158c9 */
+const SA5: f32 = 4.2900814819e+02; /* 0x43d6810b */
+const SA6: f32 = 1.0863500214e+02; /* 0x42d9451f */
+const SA7: f32 = 6.5702495575e+00; /* 0x40d23f7c */
+const SA8: f32 = -6.0424413532e-02; /* 0xbd777f97 */
+/*
+ * Coefficients for approximation to erfc in [1/.35,28]
+ */
+const RB0: f32 = -9.8649431020e-03; /* 0xbc21a092 */
+const RB1: f32 = -7.9928326607e-01; /* 0xbf4c9dd4 */
+const RB2: f32 = -1.7757955551e+01; /* 0xc18e104b */
+const RB3: f32 = -1.6063638306e+02; /* 0xc320a2ea */
+const RB4: f32 = -6.3756646729e+02; /* 0xc41f6441 */
+const RB5: f32 = -1.0250950928e+03; /* 0xc480230b */
+const RB6: f32 = -4.8351919556e+02; /* 0xc3f1c275 */
+const SB1: f32 = 3.0338060379e+01; /* 0x41f2b459 */
+const SB2: f32 = 3.2579251099e+02; /* 0x43a2e571 */
+const SB3: f32 = 1.5367296143e+03; /* 0x44c01759 */
+const SB4: f32 = 3.1998581543e+03; /* 0x4547fdbb */
+const SB5: f32 = 2.5530502930e+03; /* 0x451f90ce */
+const SB6: f32 = 4.7452853394e+02; /* 0x43ed43a7 */
+const SB7: f32 = -2.2440952301e+01; /* 0xc1b38712 */
+
+fn erfc1(x: f32) -> f32 {
+ let s: f32;
+ let p: f32;
+ let q: f32;
+
+ s = fabsf(x) - 1.0;
+ p = PA0 + s * (PA1 + s * (PA2 + s * (PA3 + s * (PA4 + s * (PA5 + s * PA6)))));
+ q = 1.0 + s * (QA1 + s * (QA2 + s * (QA3 + s * (QA4 + s * (QA5 + s * QA6)))));
+ return 1.0 - ERX - p / q;
+}
+
+fn erfc2(mut ix: u32, mut x: f32) -> f32 {
+ let s: f32;
+ let r: f32;
+ let big_s: f32;
+ let z: f32;
+
+ if ix < 0x3fa00000 {
+ /* |x| < 1.25 */
+ return erfc1(x);
+ }
+
+ x = fabsf(x);
+ s = 1.0 / (x * x);
+ if ix < 0x4036db6d {
+ /* |x| < 1/0.35 */
+ r = RA0 + s * (RA1 + s * (RA2 + s * (RA3 + s * (RA4 + s * (RA5 + s * (RA6 + s * RA7))))));
+ big_s = 1.0
+ + s * (SA1
+ + s * (SA2 + s * (SA3 + s * (SA4 + s * (SA5 + s * (SA6 + s * (SA7 + s * SA8)))))));
+ } else {
+ /* |x| >= 1/0.35 */
+ r = RB0 + s * (RB1 + s * (RB2 + s * (RB3 + s * (RB4 + s * (RB5 + s * RB6)))));
+ big_s =
+ 1.0 + s * (SB1 + s * (SB2 + s * (SB3 + s * (SB4 + s * (SB5 + s * (SB6 + s * SB7))))));
+ }
+ ix = x.to_bits();
+ z = f32::from_bits(ix & 0xffffe000);
+
+ expf(-z * z - 0.5625) * expf((z - x) * (z + x) + r / big_s) / x
+}
+
+/// Error function (f32)
+///
+/// Calculates an approximation to the “error function”, which estimates
+/// the probability that an observation will fall within x standard
+/// deviations of the mean (assuming a normal distribution).
+pub fn erff(x: f32) -> f32 {
+ let r: f32;
+ let s: f32;
+ let z: f32;
+ let y: f32;
+ let mut ix: u32;
+ let sign: usize;
+
+ ix = x.to_bits();
+ sign = (ix >> 31) as usize;
+ ix &= 0x7fffffff;
+ if ix >= 0x7f800000 {
+ /* erf(nan)=nan, erf(+-inf)=+-1 */
+ return 1.0 - 2.0 * (sign as f32) + 1.0 / x;
+ }
+ if ix < 0x3f580000 {
+ /* |x| < 0.84375 */
+ if ix < 0x31800000 {
+ /* |x| < 2**-28 */
+ /*avoid underflow */
+ return 0.125 * (8.0 * x + EFX8 * x);
+ }
+ z = x * x;
+ r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
+ s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
+ y = r / s;
+ return x + x * y;
+ }
+ if ix < 0x40c00000 {
+ /* |x| < 6 */
+ y = 1.0 - erfc2(ix, x);
+ } else {
+ let x1p_120 = f32::from_bits(0x03800000);
+ y = 1.0 - x1p_120;
+ }
+
+ if sign != 0 {
+ -y
+ } else {
+ y
+ }
+}
+
+/// Error function (f32)
+///
+/// Calculates the complementary probability.
+/// Is `1 - erf(x)`. Is computed directly, so that you can use it to avoid
+/// the loss of precision that would result from subtracting
+/// large probabilities (on large `x`) from 1.
+pub fn erfcf(x: f32) -> f32 {
+ let r: f32;
+ let s: f32;
+ let z: f32;
+ let y: f32;
+ let mut ix: u32;
+ let sign: usize;
+
+ ix = x.to_bits();
+ sign = (ix >> 31) as usize;
+ ix &= 0x7fffffff;
+ if ix >= 0x7f800000 {
+ /* erfc(nan)=nan, erfc(+-inf)=0,2 */
+ return 2.0 * (sign as f32) + 1.0 / x;
+ }
+
+ if ix < 0x3f580000 {
+ /* |x| < 0.84375 */
+ if ix < 0x23800000 {
+ /* |x| < 2**-56 */
+ return 1.0 - x;
+ }
+ z = x * x;
+ r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
+ s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
+ y = r / s;
+ if sign != 0 || ix < 0x3e800000 {
+ /* x < 1/4 */
+ return 1.0 - (x + x * y);
+ }
+ return 0.5 - (x - 0.5 + x * y);
+ }
+ if ix < 0x41e00000 {
+ /* |x| < 28 */
+ if sign != 0 {
+ return 2.0 - erfc2(ix, x);
+ } else {
+ return erfc2(ix, x);
+ }
+ }
+
+ let x1p_120 = f32::from_bits(0x03800000);
+ if sign != 0 {
+ 2.0 - x1p_120
+ } else {
+ x1p_120 * x1p_120
+ }
+}