summaryrefslogtreecommitdiffstats
path: root/vendor/libm/src/math/exp.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/libm/src/math/exp.rs')
-rw-r--r--vendor/libm/src/math/exp.rs155
1 files changed, 155 insertions, 0 deletions
diff --git a/vendor/libm/src/math/exp.rs b/vendor/libm/src/math/exp.rs
new file mode 100644
index 000000000..5465b5693
--- /dev/null
+++ b/vendor/libm/src/math/exp.rs
@@ -0,0 +1,155 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */
+/*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* exp(x)
+ * Returns the exponential of x.
+ *
+ * Method
+ * 1. Argument reduction:
+ * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+ * Given x, find r and integer k such that
+ *
+ * x = k*ln2 + r, |r| <= 0.5*ln2.
+ *
+ * Here r will be represented as r = hi-lo for better
+ * accuracy.
+ *
+ * 2. Approximation of exp(r) by a special rational function on
+ * the interval [0,0.34658]:
+ * Write
+ * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+ * We use a special Remez algorithm on [0,0.34658] to generate
+ * a polynomial of degree 5 to approximate R. The maximum error
+ * of this polynomial approximation is bounded by 2**-59. In
+ * other words,
+ * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+ * (where z=r*r, and the values of P1 to P5 are listed below)
+ * and
+ * | 5 | -59
+ * | 2.0+P1*z+...+P5*z - R(z) | <= 2
+ * | |
+ * The computation of exp(r) thus becomes
+ * 2*r
+ * exp(r) = 1 + ----------
+ * R(r) - r
+ * r*c(r)
+ * = 1 + r + ----------- (for better accuracy)
+ * 2 - c(r)
+ * where
+ * 2 4 10
+ * c(r) = r - (P1*r + P2*r + ... + P5*r ).
+ *
+ * 3. Scale back to obtain exp(x):
+ * From step 1, we have
+ * exp(x) = 2^k * exp(r)
+ *
+ * Special cases:
+ * exp(INF) is INF, exp(NaN) is NaN;
+ * exp(-INF) is 0, and
+ * for finite argument, only exp(0)=1 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For IEEE double
+ * if x > 709.782712893383973096 then exp(x) overflows
+ * if x < -745.133219101941108420 then exp(x) underflows
+ */
+
+use super::scalbn;
+
+const HALF: [f64; 2] = [0.5, -0.5];
+const LN2HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
+const LN2LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
+const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
+const P1: f64 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */
+const P2: f64 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */
+const P3: f64 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */
+const P4: f64 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */
+const P5: f64 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
+
+/// Exponential, base *e* (f64)
+///
+/// Calculate the exponential of `x`, that is, *e* raised to the power `x`
+/// (where *e* is the base of the natural system of logarithms, approximately 2.71828).
+#[inline]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn exp(mut x: f64) -> f64 {
+ let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023
+ let x1p_149 = f64::from_bits(0x36a0000000000000); // 0x1p-149 === 2 ^ -149
+
+ let hi: f64;
+ let lo: f64;
+ let c: f64;
+ let xx: f64;
+ let y: f64;
+ let k: i32;
+ let sign: i32;
+ let mut hx: u32;
+
+ hx = (x.to_bits() >> 32) as u32;
+ sign = (hx >> 31) as i32;
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* special cases */
+ if hx >= 0x4086232b {
+ /* if |x| >= 708.39... */
+ if x.is_nan() {
+ return x;
+ }
+ if x > 709.782712893383973096 {
+ /* overflow if x!=inf */
+ x *= x1p1023;
+ return x;
+ }
+ if x < -708.39641853226410622 {
+ /* underflow if x!=-inf */
+ force_eval!((-x1p_149 / x) as f32);
+ if x < -745.13321910194110842 {
+ return 0.;
+ }
+ }
+ }
+
+ /* argument reduction */
+ if hx > 0x3fd62e42 {
+ /* if |x| > 0.5 ln2 */
+ if hx >= 0x3ff0a2b2 {
+ /* if |x| >= 1.5 ln2 */
+ k = (INVLN2 * x + HALF[sign as usize]) as i32;
+ } else {
+ k = 1 - sign - sign;
+ }
+ hi = x - k as f64 * LN2HI; /* k*ln2hi is exact here */
+ lo = k as f64 * LN2LO;
+ x = hi - lo;
+ } else if hx > 0x3e300000 {
+ /* if |x| > 2**-28 */
+ k = 0;
+ hi = x;
+ lo = 0.;
+ } else {
+ /* inexact if x!=0 */
+ force_eval!(x1p1023 + x);
+ return 1. + x;
+ }
+
+ /* x is now in primary range */
+ xx = x * x;
+ c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5))));
+ y = 1. + (x * c / (2. - c) - lo + hi);
+ if k == 0 {
+ y
+ } else {
+ scalbn(y, k)
+ }
+}