diff options
Diffstat (limited to 'vendor/memchr/src/arch/all/packedpair')
-rw-r--r-- | vendor/memchr/src/arch/all/packedpair/default_rank.rs | 258 | ||||
-rw-r--r-- | vendor/memchr/src/arch/all/packedpair/mod.rs | 359 |
2 files changed, 617 insertions, 0 deletions
diff --git a/vendor/memchr/src/arch/all/packedpair/default_rank.rs b/vendor/memchr/src/arch/all/packedpair/default_rank.rs new file mode 100644 index 000000000..6aa3895e6 --- /dev/null +++ b/vendor/memchr/src/arch/all/packedpair/default_rank.rs @@ -0,0 +1,258 @@ +pub(crate) const RANK: [u8; 256] = [ + 55, // '\x00' + 52, // '\x01' + 51, // '\x02' + 50, // '\x03' + 49, // '\x04' + 48, // '\x05' + 47, // '\x06' + 46, // '\x07' + 45, // '\x08' + 103, // '\t' + 242, // '\n' + 66, // '\x0b' + 67, // '\x0c' + 229, // '\r' + 44, // '\x0e' + 43, // '\x0f' + 42, // '\x10' + 41, // '\x11' + 40, // '\x12' + 39, // '\x13' + 38, // '\x14' + 37, // '\x15' + 36, // '\x16' + 35, // '\x17' + 34, // '\x18' + 33, // '\x19' + 56, // '\x1a' + 32, // '\x1b' + 31, // '\x1c' + 30, // '\x1d' + 29, // '\x1e' + 28, // '\x1f' + 255, // ' ' + 148, // '!' + 164, // '"' + 149, // '#' + 136, // '$' + 160, // '%' + 155, // '&' + 173, // "'" + 221, // '(' + 222, // ')' + 134, // '*' + 122, // '+' + 232, // ',' + 202, // '-' + 215, // '.' + 224, // '/' + 208, // '0' + 220, // '1' + 204, // '2' + 187, // '3' + 183, // '4' + 179, // '5' + 177, // '6' + 168, // '7' + 178, // '8' + 200, // '9' + 226, // ':' + 195, // ';' + 154, // '<' + 184, // '=' + 174, // '>' + 126, // '?' + 120, // '@' + 191, // 'A' + 157, // 'B' + 194, // 'C' + 170, // 'D' + 189, // 'E' + 162, // 'F' + 161, // 'G' + 150, // 'H' + 193, // 'I' + 142, // 'J' + 137, // 'K' + 171, // 'L' + 176, // 'M' + 185, // 'N' + 167, // 'O' + 186, // 'P' + 112, // 'Q' + 175, // 'R' + 192, // 'S' + 188, // 'T' + 156, // 'U' + 140, // 'V' + 143, // 'W' + 123, // 'X' + 133, // 'Y' + 128, // 'Z' + 147, // '[' + 138, // '\\' + 146, // ']' + 114, // '^' + 223, // '_' + 151, // '`' + 249, // 'a' + 216, // 'b' + 238, // 'c' + 236, // 'd' + 253, // 'e' + 227, // 'f' + 218, // 'g' + 230, // 'h' + 247, // 'i' + 135, // 'j' + 180, // 'k' + 241, // 'l' + 233, // 'm' + 246, // 'n' + 244, // 'o' + 231, // 'p' + 139, // 'q' + 245, // 'r' + 243, // 's' + 251, // 't' + 235, // 'u' + 201, // 'v' + 196, // 'w' + 240, // 'x' + 214, // 'y' + 152, // 'z' + 182, // '{' + 205, // '|' + 181, // '}' + 127, // '~' + 27, // '\x7f' + 212, // '\x80' + 211, // '\x81' + 210, // '\x82' + 213, // '\x83' + 228, // '\x84' + 197, // '\x85' + 169, // '\x86' + 159, // '\x87' + 131, // '\x88' + 172, // '\x89' + 105, // '\x8a' + 80, // '\x8b' + 98, // '\x8c' + 96, // '\x8d' + 97, // '\x8e' + 81, // '\x8f' + 207, // '\x90' + 145, // '\x91' + 116, // '\x92' + 115, // '\x93' + 144, // '\x94' + 130, // '\x95' + 153, // '\x96' + 121, // '\x97' + 107, // '\x98' + 132, // '\x99' + 109, // '\x9a' + 110, // '\x9b' + 124, // '\x9c' + 111, // '\x9d' + 82, // '\x9e' + 108, // '\x9f' + 118, // '\xa0' + 141, // '¡' + 113, // '¢' + 129, // '£' + 119, // '¤' + 125, // '¥' + 165, // '¦' + 117, // '§' + 92, // '¨' + 106, // '©' + 83, // 'ª' + 72, // '«' + 99, // '¬' + 93, // '\xad' + 65, // '®' + 79, // '¯' + 166, // '°' + 237, // '±' + 163, // '²' + 199, // '³' + 190, // '´' + 225, // 'µ' + 209, // '¶' + 203, // '·' + 198, // '¸' + 217, // '¹' + 219, // 'º' + 206, // '»' + 234, // '¼' + 248, // '½' + 158, // '¾' + 239, // '¿' + 255, // 'À' + 255, // 'Á' + 255, // 'Â' + 255, // 'Ã' + 255, // 'Ä' + 255, // 'Å' + 255, // 'Æ' + 255, // 'Ç' + 255, // 'È' + 255, // 'É' + 255, // 'Ê' + 255, // 'Ë' + 255, // 'Ì' + 255, // 'Í' + 255, // 'Î' + 255, // 'Ï' + 255, // 'Ð' + 255, // 'Ñ' + 255, // 'Ò' + 255, // 'Ó' + 255, // 'Ô' + 255, // 'Õ' + 255, // 'Ö' + 255, // '×' + 255, // 'Ø' + 255, // 'Ù' + 255, // 'Ú' + 255, // 'Û' + 255, // 'Ü' + 255, // 'Ý' + 255, // 'Þ' + 255, // 'ß' + 255, // 'à' + 255, // 'á' + 255, // 'â' + 255, // 'ã' + 255, // 'ä' + 255, // 'å' + 255, // 'æ' + 255, // 'ç' + 255, // 'è' + 255, // 'é' + 255, // 'ê' + 255, // 'ë' + 255, // 'ì' + 255, // 'í' + 255, // 'î' + 255, // 'ï' + 255, // 'ð' + 255, // 'ñ' + 255, // 'ò' + 255, // 'ó' + 255, // 'ô' + 255, // 'õ' + 255, // 'ö' + 255, // '÷' + 255, // 'ø' + 255, // 'ù' + 255, // 'ú' + 255, // 'û' + 255, // 'ü' + 255, // 'ý' + 255, // 'þ' + 255, // 'ÿ' +]; diff --git a/vendor/memchr/src/arch/all/packedpair/mod.rs b/vendor/memchr/src/arch/all/packedpair/mod.rs new file mode 100644 index 000000000..148a98552 --- /dev/null +++ b/vendor/memchr/src/arch/all/packedpair/mod.rs @@ -0,0 +1,359 @@ +/*! +Provides an architecture independent implementation of the "packed pair" +algorithm. + +The "packed pair" algorithm is based on the [generic SIMD] algorithm. The main +difference is that it (by default) uses a background distribution of byte +frequencies to heuristically select the pair of bytes to search for. Note that +this module provides an architecture independent version that doesn't do as +good of a job keeping the search for candidates inside a SIMD hot path. It +however can be good enough in many circumstances. + +[generic SIMD]: http://0x80.pl/articles/simd-strfind.html#first-and-last +*/ + +use crate::memchr; + +mod default_rank; + +/// An architecture independent "packed pair" finder. +/// +/// This finder picks two bytes that it believes have high predictive power for +/// indicating an overall match of a needle. At search time, it reports offsets +/// where the needle could match based on whether the pair of bytes it chose +/// match. +/// +/// This is architecture independent because it utilizes `memchr` to find the +/// occurrence of one of the bytes in the pair, and then checks whether the +/// second byte matches. If it does, in the case of [`Finder::find_prefilter`], +/// the location at which the needle could match is returned. +/// +/// It is generally preferred to use architecture specific routines for a +/// "packed pair" prefilter, but this can be a useful fallback when the +/// architecture independent routines are unavailable. +#[derive(Clone, Copy, Debug)] +pub struct Finder { + pair: Pair, + byte1: u8, + byte2: u8, +} + +impl Finder { + /// Create a new prefilter that reports possible locations where the given + /// needle matches. + #[inline] + pub fn new(needle: &[u8]) -> Option<Finder> { + Finder::with_pair(needle, Pair::new(needle)?) + } + + /// Create a new prefilter using the pair given. + /// + /// If the prefilter could not be constructed, then `None` is returned. + /// + /// This constructor permits callers to control precisely which pair of + /// bytes is used as a predicate. + #[inline] + pub fn with_pair(needle: &[u8], pair: Pair) -> Option<Finder> { + let byte1 = needle[usize::from(pair.index1())]; + let byte2 = needle[usize::from(pair.index2())]; + // Currently this can never fail so we could just return a Finder, + // but it's conceivable this could change. + Some(Finder { pair, byte1, byte2 }) + } + + /// Run this finder on the given haystack as a prefilter. + /// + /// If a candidate match is found, then an offset where the needle *could* + /// begin in the haystack is returned. + #[inline] + pub fn find_prefilter(&self, haystack: &[u8]) -> Option<usize> { + let mut i = 0; + let index1 = usize::from(self.pair.index1()); + let index2 = usize::from(self.pair.index2()); + loop { + // Use a fast vectorized implementation to skip to the next + // occurrence of the rarest byte (heuristically chosen) in the + // needle. + i += memchr(self.byte1, &haystack[i..])?; + let found = i; + i += 1; + + // If we can't align our first byte match with the haystack, then a + // match is impossible. + let aligned1 = match found.checked_sub(index1) { + None => continue, + Some(aligned1) => aligned1, + }; + + // Now align the second byte match with the haystack. A mismatch + // means that a match is impossible. + let aligned2 = match aligned1.checked_add(index2) { + None => continue, + Some(aligned_index2) => aligned_index2, + }; + if haystack.get(aligned2).map_or(true, |&b| b != self.byte2) { + continue; + } + + // We've done what we can. There might be a match here. + return Some(aligned1); + } + } + + /// Returns the pair of offsets (into the needle) used to check as a + /// predicate before confirming whether a needle exists at a particular + /// position. + #[inline] + pub fn pair(&self) -> &Pair { + &self.pair + } +} + +/// A pair of byte offsets into a needle to use as a predicate. +/// +/// This pair is used as a predicate to quickly filter out positions in a +/// haystack in which a needle cannot match. In some cases, this pair can even +/// be used in vector algorithms such that the vector algorithm only switches +/// over to scalar code once this pair has been found. +/// +/// A pair of offsets can be used in both substring search implementations and +/// in prefilters. The former will report matches of a needle in a haystack +/// where as the latter will only report possible matches of a needle. +/// +/// The offsets are limited each to a maximum of 255 to keep memory usage low. +/// Moreover, it's rarely advantageous to create a predicate using offsets +/// greater than 255 anyway. +/// +/// The only guarantee enforced on the pair of offsets is that they are not +/// equivalent. It is not necessarily the case that `index1 < index2` for +/// example. By convention, `index1` corresponds to the byte in the needle +/// that is believed to be most the predictive. Note also that because of the +/// requirement that the indices be both valid for the needle used to build +/// the pair and not equal, it follows that a pair can only be constructed for +/// needles with length at least 2. +#[derive(Clone, Copy, Debug)] +pub struct Pair { + index1: u8, + index2: u8, +} + +impl Pair { + /// Create a new pair of offsets from the given needle. + /// + /// If a pair could not be created (for example, if the needle is too + /// short), then `None` is returned. + /// + /// This chooses the pair in the needle that is believed to be as + /// predictive of an overall match of the needle as possible. + #[inline] + pub fn new(needle: &[u8]) -> Option<Pair> { + Pair::with_ranker(needle, DefaultFrequencyRank) + } + + /// Create a new pair of offsets from the given needle and ranker. + /// + /// This permits the caller to choose a background frequency distribution + /// with which bytes are selected. The idea is to select a pair of bytes + /// that is believed to strongly predict a match in the haystack. This + /// usually means selecting bytes that occur rarely in a haystack. + /// + /// If a pair could not be created (for example, if the needle is too + /// short), then `None` is returned. + #[inline] + pub fn with_ranker<R: HeuristicFrequencyRank>( + needle: &[u8], + ranker: R, + ) -> Option<Pair> { + if needle.len() <= 1 { + return None; + } + // Find the rarest two bytes. We make them distinct indices by + // construction. (The actual byte value may be the same in degenerate + // cases, but that's OK.) + let (mut rare1, mut index1) = (needle[0], 0); + let (mut rare2, mut index2) = (needle[1], 1); + if ranker.rank(rare2) < ranker.rank(rare1) { + core::mem::swap(&mut rare1, &mut rare2); + core::mem::swap(&mut index1, &mut index2); + } + let max = usize::from(core::u8::MAX); + for (i, &b) in needle.iter().enumerate().take(max).skip(2) { + if ranker.rank(b) < ranker.rank(rare1) { + rare2 = rare1; + index2 = index1; + rare1 = b; + index1 = u8::try_from(i).unwrap(); + } else if b != rare1 && ranker.rank(b) < ranker.rank(rare2) { + rare2 = b; + index2 = u8::try_from(i).unwrap(); + } + } + // While not strictly required for how a Pair is normally used, we + // really don't want these to be equivalent. If they were, it would + // reduce the effectiveness of candidate searching using these rare + // bytes by increasing the rate of false positives. + assert_ne!(index1, index2); + Some(Pair { index1, index2 }) + } + + /// Create a new pair using the offsets given for the needle given. + /// + /// This bypasses any sort of heuristic process for choosing the offsets + /// and permits the caller to choose the offsets themselves. + /// + /// Indices are limited to valid `u8` values so that a `Pair` uses less + /// memory. It is not possible to create a `Pair` with offsets bigger than + /// `u8::MAX`. It's likely that such a thing is not needed, but if it is, + /// it's suggested to build your own bespoke algorithm because you're + /// likely working on a very niche case. (File an issue if this suggestion + /// does not make sense to you.) + /// + /// If a pair could not be created (for example, if the needle is too + /// short), then `None` is returned. + #[inline] + pub fn with_indices( + needle: &[u8], + index1: u8, + index2: u8, + ) -> Option<Pair> { + // While not strictly required for how a Pair is normally used, we + // really don't want these to be equivalent. If they were, it would + // reduce the effectiveness of candidate searching using these rare + // bytes by increasing the rate of false positives. + if index1 == index2 { + return None; + } + // Similarly, invalid indices means the Pair is invalid too. + if usize::from(index1) >= needle.len() { + return None; + } + if usize::from(index2) >= needle.len() { + return None; + } + Some(Pair { index1, index2 }) + } + + /// Returns the first offset of the pair. + #[inline] + pub fn index1(&self) -> u8 { + self.index1 + } + + /// Returns the second offset of the pair. + #[inline] + pub fn index2(&self) -> u8 { + self.index2 + } +} + +/// This trait allows the user to customize the heuristic used to determine the +/// relative frequency of a given byte in the dataset being searched. +/// +/// The use of this trait can have a dramatic impact on performance depending +/// on the type of data being searched. The details of why are explained in the +/// docs of [`crate::memmem::Prefilter`]. To summarize, the core algorithm uses +/// a prefilter to quickly identify candidate matches that are later verified +/// more slowly. This prefilter is implemented in terms of trying to find +/// `rare` bytes at specific offsets that will occur less frequently in the +/// dataset. While the concept of a `rare` byte is similar for most datasets, +/// there are some specific datasets (like binary executables) that have +/// dramatically different byte distributions. For these datasets customizing +/// the byte frequency heuristic can have a massive impact on performance, and +/// might even need to be done at runtime. +/// +/// The default implementation of `HeuristicFrequencyRank` reads from the +/// static frequency table defined in `src/memmem/byte_frequencies.rs`. This +/// is optimal for most inputs, so if you are unsure of the impact of using a +/// custom `HeuristicFrequencyRank` you should probably just use the default. +/// +/// # Example +/// +/// ``` +/// use memchr::{ +/// arch::all::packedpair::HeuristicFrequencyRank, +/// memmem::FinderBuilder, +/// }; +/// +/// /// A byte-frequency table that is good for scanning binary executables. +/// struct Binary; +/// +/// impl HeuristicFrequencyRank for Binary { +/// fn rank(&self, byte: u8) -> u8 { +/// const TABLE: [u8; 256] = [ +/// 255, 128, 61, 43, 50, 41, 27, 28, 57, 15, 21, 13, 24, 17, 17, +/// 89, 58, 16, 11, 7, 14, 23, 7, 6, 24, 9, 6, 5, 9, 4, 7, 16, +/// 68, 11, 9, 6, 88, 7, 4, 4, 23, 9, 4, 8, 8, 5, 10, 4, 30, 11, +/// 9, 24, 11, 5, 5, 5, 19, 11, 6, 17, 9, 9, 6, 8, +/// 48, 58, 11, 14, 53, 40, 9, 9, 254, 35, 3, 6, 52, 23, 6, 6, 27, +/// 4, 7, 11, 14, 13, 10, 11, 11, 5, 2, 10, 16, 12, 6, 19, +/// 19, 20, 5, 14, 16, 31, 19, 7, 14, 20, 4, 4, 19, 8, 18, 20, 24, +/// 1, 25, 19, 58, 29, 10, 5, 15, 20, 2, 2, 9, 4, 3, 5, +/// 51, 11, 4, 53, 23, 39, 6, 4, 13, 81, 4, 186, 5, 67, 3, 2, 15, +/// 0, 0, 1, 3, 2, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, +/// 12, 2, 1, 1, 3, 1, 1, 1, 6, 1, 2, 1, 3, 1, 1, 2, 9, 1, 1, 0, +/// 2, 2, 4, 4, 11, 6, 7, 3, 6, 9, 4, 5, +/// 46, 18, 8, 18, 17, 3, 8, 20, 16, 10, 3, 7, 175, 4, 6, 7, 13, +/// 3, 7, 3, 3, 1, 3, 3, 10, 3, 1, 5, 2, 0, 1, 2, +/// 16, 3, 5, 1, 6, 1, 1, 2, 58, 20, 3, 14, 12, 2, 1, 3, 16, 3, 5, +/// 8, 3, 1, 8, 6, 17, 6, 5, 3, 8, 6, 13, 175, +/// ]; +/// TABLE[byte as usize] +/// } +/// } +/// // Create a new finder with the custom heuristic. +/// let finder = FinderBuilder::new() +/// .build_forward_with_ranker(Binary, b"\x00\x00\xdd\xdd"); +/// // Find needle with custom heuristic. +/// assert!(finder.find(b"\x00\x00\x00\xdd\xdd").is_some()); +/// ``` +pub trait HeuristicFrequencyRank { + /// Return the heuristic frequency rank of the given byte. A lower rank + /// means the byte is believed to occur less frequently in the haystack. + /// + /// Some uses of this heuristic may treat arbitrary absolute rank values as + /// significant. For example, an implementation detail in this crate may + /// determine that heuristic prefilters are inappropriate if every byte in + /// the needle has a "high" rank. + fn rank(&self, byte: u8) -> u8; +} + +/// The default byte frequency heuristic that is good for most haystacks. +pub(crate) struct DefaultFrequencyRank; + +impl HeuristicFrequencyRank for DefaultFrequencyRank { + fn rank(&self, byte: u8) -> u8 { + self::default_rank::RANK[usize::from(byte)] + } +} + +/// This permits passing any implementation of `HeuristicFrequencyRank` as a +/// borrowed version of itself. +impl<'a, R> HeuristicFrequencyRank for &'a R +where + R: HeuristicFrequencyRank, +{ + fn rank(&self, byte: u8) -> u8 { + (**self).rank(byte) + } +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn forward_packedpair() { + fn find( + haystack: &[u8], + needle: &[u8], + _index1: u8, + _index2: u8, + ) -> Option<Option<usize>> { + // We ignore the index positions requested since it winds up making + // this test too slow overall. + let f = Finder::new(needle)?; + Some(f.find_prefilter(haystack)) + } + crate::tests::packedpair::Runner::new().fwd(find).run() + } +} |