diff options
Diffstat (limited to 'vendor/petgraph/tests/quickcheck.rs')
-rw-r--r-- | vendor/petgraph/tests/quickcheck.rs | 967 |
1 files changed, 967 insertions, 0 deletions
diff --git a/vendor/petgraph/tests/quickcheck.rs b/vendor/petgraph/tests/quickcheck.rs new file mode 100644 index 000000000..f95eb1c17 --- /dev/null +++ b/vendor/petgraph/tests/quickcheck.rs @@ -0,0 +1,967 @@ +#![cfg(feature = "quickcheck")] +#[macro_use] +extern crate quickcheck; +extern crate petgraph; +extern crate rand; +#[macro_use] +extern crate defmac; + +extern crate itertools; +extern crate odds; + +mod utils; + +use utils::Small; + +use odds::prelude::*; +use std::collections::HashSet; +use std::hash::Hash; + +use itertools::assert_equal; +use itertools::cloned; +use rand::Rng; + +use petgraph::algo::{ + bellman_ford, condensation, dijkstra, is_cyclic_directed, is_cyclic_undirected, is_isomorphic, + is_isomorphic_matching, kosaraju_scc, min_spanning_tree, tarjan_scc, toposort, +}; +use petgraph::data::FromElements; +use petgraph::dot::{Config, Dot}; +use petgraph::graph::{edge_index, node_index, IndexType}; +use petgraph::graphmap::NodeTrait; +use petgraph::prelude::*; +use petgraph::visit::{EdgeRef, IntoEdgeReferences, IntoNodeReferences, NodeIndexable}; +use petgraph::visit::{Reversed, Topo}; +use petgraph::EdgeType; + +fn mst_graph<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>) -> Graph<N, E, Undirected, Ix> +where + Ty: EdgeType, + Ix: IndexType, + N: Clone, + E: Clone + PartialOrd, +{ + Graph::from_elements(min_spanning_tree(&g)) +} + +use std::fmt; + +quickcheck! { + fn mst_directed(g: Small<Graph<(), u32>>) -> bool { + // filter out isolated nodes + let no_singles = g.filter_map( + |nx, w| g.neighbors_undirected(nx).next().map(|_| w), + |_, w| Some(w)); + for i in no_singles.node_indices() { + assert!(no_singles.neighbors_undirected(i).count() > 0); + } + assert_eq!(no_singles.edge_count(), g.edge_count()); + let mst = mst_graph(&no_singles); + assert!(!is_cyclic_undirected(&mst)); + true + } +} + +quickcheck! { + fn mst_undirected(g: Graph<(), u32, Undirected>) -> bool { + // filter out isolated nodes + let no_singles = g.filter_map( + |nx, w| g.neighbors_undirected(nx).next().map(|_| w), + |_, w| Some(w)); + for i in no_singles.node_indices() { + assert!(no_singles.neighbors_undirected(i).count() > 0); + } + assert_eq!(no_singles.edge_count(), g.edge_count()); + let mst = mst_graph(&no_singles); + assert!(!is_cyclic_undirected(&mst)); + true + } +} + +quickcheck! { + fn reverse_undirected(g: Small<UnGraph<(), ()>>) -> bool { + let mut h = (*g).clone(); + h.reverse(); + is_isomorphic(&g, &h) + } +} + +fn assert_graph_consistent<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>) +where + Ty: EdgeType, + Ix: IndexType, +{ + assert_eq!(g.node_count(), g.node_indices().count()); + assert_eq!(g.edge_count(), g.edge_indices().count()); + for edge in g.raw_edges() { + assert!( + g.find_edge(edge.source(), edge.target()).is_some(), + "Edge not in graph! {:?} to {:?}", + edge.source(), + edge.target() + ); + } +} + +#[test] +fn reverse_directed() { + fn prop<Ty: EdgeType>(mut g: Graph<(), (), Ty>) -> bool { + let node_outdegrees = g + .node_indices() + .map(|i| g.neighbors_directed(i, Outgoing).count()) + .collect::<Vec<_>>(); + let node_indegrees = g + .node_indices() + .map(|i| g.neighbors_directed(i, Incoming).count()) + .collect::<Vec<_>>(); + + g.reverse(); + let new_outdegrees = g + .node_indices() + .map(|i| g.neighbors_directed(i, Outgoing).count()) + .collect::<Vec<_>>(); + let new_indegrees = g + .node_indices() + .map(|i| g.neighbors_directed(i, Incoming).count()) + .collect::<Vec<_>>(); + assert_eq!(node_outdegrees, new_indegrees); + assert_eq!(node_indegrees, new_outdegrees); + assert_graph_consistent(&g); + true + } + quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>) -> bool); +} + +#[test] +fn graph_retain_nodes() { + fn prop<Ty: EdgeType>(mut g: Graph<i32, i32, Ty>) -> bool { + // Remove all negative nodes, these should be randomly spread + let og = g.clone(); + let nodes = g.node_count(); + let num_negs = g.raw_nodes().iter().filter(|n| n.weight < 0).count(); + let mut removed = 0; + g.retain_nodes(|g, i| { + let keep = g[i] >= 0; + if !keep { + removed += 1; + } + keep + }); + let num_negs_post = g.raw_nodes().iter().filter(|n| n.weight < 0).count(); + let num_pos_post = g.raw_nodes().iter().filter(|n| n.weight >= 0).count(); + assert_eq!(num_negs_post, 0); + assert_eq!(removed, num_negs); + assert_eq!(num_negs + g.node_count(), nodes); + assert_eq!(num_pos_post, g.node_count()); + + // check against filter_map + let filtered = og.filter_map( + |_, w| if *w >= 0 { Some(*w) } else { None }, + |_, w| Some(*w), + ); + assert_eq!(g.node_count(), filtered.node_count()); + /* + println!("Iso of graph with nodes={}, edges={}", + g.node_count(), g.edge_count()); + */ + assert!(is_isomorphic_matching( + &filtered, + &g, + PartialEq::eq, + PartialEq::eq + )); + + true + } + quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>) -> bool); + quickcheck::quickcheck(prop as fn(Graph<_, _, Undirected>) -> bool); +} + +#[test] +fn graph_retain_edges() { + fn prop<Ty: EdgeType>(mut g: Graph<(), i32, Ty>) -> bool { + // Remove all negative edges, these should be randomly spread + let og = g.clone(); + let edges = g.edge_count(); + let num_negs = g.raw_edges().iter().filter(|n| n.weight < 0).count(); + let mut removed = 0; + g.retain_edges(|g, i| { + let keep = g[i] >= 0; + if !keep { + removed += 1; + } + keep + }); + let num_negs_post = g.raw_edges().iter().filter(|n| n.weight < 0).count(); + let num_pos_post = g.raw_edges().iter().filter(|n| n.weight >= 0).count(); + assert_eq!(num_negs_post, 0); + assert_eq!(removed, num_negs); + assert_eq!(num_negs + g.edge_count(), edges); + assert_eq!(num_pos_post, g.edge_count()); + if og.edge_count() < 30 { + // check against filter_map + let filtered = og.filter_map( + |_, w| Some(*w), + |_, w| if *w >= 0 { Some(*w) } else { None }, + ); + assert_eq!(g.node_count(), filtered.node_count()); + assert!(is_isomorphic(&filtered, &g)); + } + true + } + quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>) -> bool); + quickcheck::quickcheck(prop as fn(Graph<_, _, Undirected>) -> bool); +} + +#[test] +fn stable_graph_retain_edges() { + fn prop<Ty: EdgeType>(mut g: StableGraph<(), i32, Ty>) -> bool { + // Remove all negative edges, these should be randomly spread + let og = g.clone(); + let edges = g.edge_count(); + let num_negs = g.edge_references().filter(|n| *n.weight() < 0).count(); + let mut removed = 0; + g.retain_edges(|g, i| { + let keep = g[i] >= 0; + if !keep { + removed += 1; + } + keep + }); + let num_negs_post = g.edge_references().filter(|n| *n.weight() < 0).count(); + let num_pos_post = g.edge_references().filter(|n| *n.weight() >= 0).count(); + assert_eq!(num_negs_post, 0); + assert_eq!(removed, num_negs); + assert_eq!(num_negs + g.edge_count(), edges); + assert_eq!(num_pos_post, g.edge_count()); + if og.edge_count() < 30 { + // check against filter_map + let filtered = og.filter_map( + |_, w| Some(*w), + |_, w| if *w >= 0 { Some(*w) } else { None }, + ); + assert_eq!(g.node_count(), filtered.node_count()); + } + true + } + quickcheck::quickcheck(prop as fn(StableGraph<_, _, Directed>) -> bool); + quickcheck::quickcheck(prop as fn(StableGraph<_, _, Undirected>) -> bool); +} + +#[test] +fn isomorphism_1() { + // using small weights so that duplicates are likely + fn prop<Ty: EdgeType>(g: Small<Graph<i8, i8, Ty>>) -> bool { + let mut rng = rand::thread_rng(); + // several trials of different isomorphisms of the same graph + // mapping of node indices + let mut map = g.node_indices().collect::<Vec<_>>(); + let mut ng = Graph::<_, _, Ty>::with_capacity(g.node_count(), g.edge_count()); + for _ in 0..1 { + rng.shuffle(&mut map); + ng.clear(); + + for _ in g.node_indices() { + ng.add_node(0); + } + // Assign node weights + for i in g.node_indices() { + ng[map[i.index()]] = g[i]; + } + // Add edges + for i in g.edge_indices() { + let (s, t) = g.edge_endpoints(i).unwrap(); + ng.add_edge(map[s.index()], map[t.index()], g[i]); + } + if g.node_count() < 20 && g.edge_count() < 50 { + assert!(is_isomorphic(&g, &ng)); + } + assert!(is_isomorphic_matching( + &g, + &ng, + PartialEq::eq, + PartialEq::eq + )); + } + true + } + quickcheck::quickcheck(prop::<Undirected> as fn(_) -> bool); + quickcheck::quickcheck(prop::<Directed> as fn(_) -> bool); +} + +#[test] +fn isomorphism_modify() { + // using small weights so that duplicates are likely + fn prop<Ty: EdgeType>(g: Small<Graph<i16, i8, Ty>>, node: u8, edge: u8) -> bool { + println!("graph {:#?}", g); + let mut ng = (*g).clone(); + let i = node_index(node as usize); + let j = edge_index(edge as usize); + if i.index() < g.node_count() { + ng[i] = (g[i] == 0) as i16; + } + if j.index() < g.edge_count() { + ng[j] = (g[j] == 0) as i8; + } + if i.index() < g.node_count() || j.index() < g.edge_count() { + assert!(!is_isomorphic_matching( + &g, + &ng, + PartialEq::eq, + PartialEq::eq + )); + } else { + assert!(is_isomorphic_matching( + &g, + &ng, + PartialEq::eq, + PartialEq::eq + )); + } + true + } + quickcheck::quickcheck(prop::<Undirected> as fn(_, _, _) -> bool); + quickcheck::quickcheck(prop::<Directed> as fn(_, _, _) -> bool); +} + +#[test] +fn graph_remove_edge() { + fn prop<Ty: EdgeType>(mut g: Graph<(), (), Ty>, a: u8, b: u8) -> bool { + let a = node_index(a as usize); + let b = node_index(b as usize); + let edge = g.find_edge(a, b); + if !g.is_directed() { + assert_eq!(edge.is_some(), g.find_edge(b, a).is_some()); + } + if let Some(ex) = edge { + assert!(g.remove_edge(ex).is_some()); + } + assert_graph_consistent(&g); + assert!(g.find_edge(a, b).is_none()); + assert!(g.neighbors(a).find(|x| *x == b).is_none()); + if !g.is_directed() { + assert!(g.neighbors(b).find(|x| *x == a).is_none()); + } + true + } + quickcheck::quickcheck(prop as fn(Graph<_, _, Undirected>, _, _) -> bool); + quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>, _, _) -> bool); +} + +#[cfg(feature = "stable_graph")] +#[test] +fn stable_graph_remove_edge() { + fn prop<Ty: EdgeType>(mut g: StableGraph<(), (), Ty>, a: u8, b: u8) -> bool { + let a = node_index(a as usize); + let b = node_index(b as usize); + let edge = g.find_edge(a, b); + if !g.is_directed() { + assert_eq!(edge.is_some(), g.find_edge(b, a).is_some()); + } + if let Some(ex) = edge { + assert!(g.remove_edge(ex).is_some()); + } + //assert_graph_consistent(&g); + assert!(g.find_edge(a, b).is_none()); + assert!(g.neighbors(a).find(|x| *x == b).is_none()); + if !g.is_directed() { + assert!(g.find_edge(b, a).is_none()); + assert!(g.neighbors(b).find(|x| *x == a).is_none()); + } + true + } + quickcheck::quickcheck(prop as fn(StableGraph<_, _, Undirected>, _, _) -> bool); + quickcheck::quickcheck(prop as fn(StableGraph<_, _, Directed>, _, _) -> bool); +} + +#[cfg(feature = "stable_graph")] +#[test] +fn stable_graph_add_remove_edges() { + fn prop<Ty: EdgeType>(mut g: StableGraph<(), (), Ty>, edges: Vec<(u8, u8)>) -> bool { + for &(a, b) in &edges { + let a = node_index(a as usize); + let b = node_index(b as usize); + let edge = g.find_edge(a, b); + + if edge.is_none() && g.contains_node(a) && g.contains_node(b) { + let _index = g.add_edge(a, b, ()); + continue; + } + + if !g.is_directed() { + assert_eq!(edge.is_some(), g.find_edge(b, a).is_some()); + } + if let Some(ex) = edge { + assert!(g.remove_edge(ex).is_some()); + } + //assert_graph_consistent(&g); + assert!( + g.find_edge(a, b).is_none(), + "failed to remove edge {:?} from graph {:?}", + (a, b), + g + ); + assert!(g.neighbors(a).find(|x| *x == b).is_none()); + if !g.is_directed() { + assert!(g.find_edge(b, a).is_none()); + assert!(g.neighbors(b).find(|x| *x == a).is_none()); + } + } + true + } + quickcheck::quickcheck(prop as fn(StableGraph<_, _, Undirected>, _) -> bool); + quickcheck::quickcheck(prop as fn(StableGraph<_, _, Directed>, _) -> bool); +} + +fn assert_graphmap_consistent<N, E, Ty>(g: &GraphMap<N, E, Ty>) +where + Ty: EdgeType, + N: NodeTrait + fmt::Debug, +{ + for (a, b, _weight) in g.all_edges() { + assert!( + g.contains_edge(a, b), + "Edge not in graph! {:?} to {:?}", + a, + b + ); + assert!( + g.neighbors(a).find(|x| *x == b).is_some(), + "Edge {:?} not in neighbor list for {:?}", + (a, b), + a + ); + if !g.is_directed() { + assert!( + g.neighbors(b).find(|x| *x == a).is_some(), + "Edge {:?} not in neighbor list for {:?}", + (b, a), + b + ); + } + } +} + +#[test] +fn graphmap_remove() { + fn prop<Ty: EdgeType>(mut g: GraphMap<i8, (), Ty>, a: i8, b: i8) -> bool { + //if g.edge_count() > 20 { return true; } + assert_graphmap_consistent(&g); + let contains = g.contains_edge(a, b); + if !g.is_directed() { + assert_eq!(contains, g.contains_edge(b, a)); + } + assert_eq!(g.remove_edge(a, b).is_some(), contains); + assert!(!g.contains_edge(a, b) && g.neighbors(a).find(|x| *x == b).is_none()); + //(g.is_directed() || g.neighbors(b).find(|x| *x == a).is_none())); + assert!(g.remove_edge(a, b).is_none()); + assert_graphmap_consistent(&g); + true + } + quickcheck::quickcheck(prop as fn(DiGraphMap<_, _>, _, _) -> bool); + quickcheck::quickcheck(prop as fn(UnGraphMap<_, _>, _, _) -> bool); +} + +#[test] +fn graphmap_add_remove() { + fn prop(mut g: UnGraphMap<i8, ()>, a: i8, b: i8) -> bool { + assert_eq!(g.contains_edge(a, b), g.add_edge(a, b, ()).is_some()); + g.remove_edge(a, b); + !g.contains_edge(a, b) + && g.neighbors(a).find(|x| *x == b).is_none() + && g.neighbors(b).find(|x| *x == a).is_none() + } + quickcheck::quickcheck(prop as fn(_, _, _) -> bool); +} + +fn sort_sccs<T: Ord>(v: &mut [Vec<T>]) { + for scc in &mut *v { + scc.sort(); + } + v.sort(); +} + +quickcheck! { + fn graph_sccs(g: Graph<(), ()>) -> bool { + let mut sccs = kosaraju_scc(&g); + let mut tsccs = tarjan_scc(&g); + sort_sccs(&mut sccs); + sort_sccs(&mut tsccs); + if sccs != tsccs { + println!("{:?}", + Dot::with_config(&g, &[Config::EdgeNoLabel, + Config::NodeIndexLabel])); + println!("Sccs {:?}", sccs); + println!("Sccs (Tarjan) {:?}", tsccs); + return false; + } + true + } +} + +quickcheck! { + fn kosaraju_scc_is_topo_sort(g: Graph<(), ()>) -> bool { + let tsccs = kosaraju_scc(&g); + let firsts = vec(tsccs.iter().rev().map(|v| v[0])); + subset_is_topo_order(&g, &firsts) + } +} + +quickcheck! { + fn tarjan_scc_is_topo_sort(g: Graph<(), ()>) -> bool { + let tsccs = tarjan_scc(&g); + let firsts = vec(tsccs.iter().rev().map(|v| v[0])); + subset_is_topo_order(&g, &firsts) + } +} + +quickcheck! { + // Reversed edges gives the same sccs (when sorted) + fn graph_reverse_sccs(g: Graph<(), ()>) -> bool { + let mut sccs = kosaraju_scc(&g); + let mut tsccs = kosaraju_scc(Reversed(&g)); + sort_sccs(&mut sccs); + sort_sccs(&mut tsccs); + if sccs != tsccs { + println!("{:?}", + Dot::with_config(&g, &[Config::EdgeNoLabel, + Config::NodeIndexLabel])); + println!("Sccs {:?}", sccs); + println!("Sccs (Reversed) {:?}", tsccs); + return false; + } + true + } +} + +quickcheck! { + // Reversed edges gives the same sccs (when sorted) + fn graphmap_reverse_sccs(g: DiGraphMap<u16, ()>) -> bool { + let mut sccs = kosaraju_scc(&g); + let mut tsccs = kosaraju_scc(Reversed(&g)); + sort_sccs(&mut sccs); + sort_sccs(&mut tsccs); + if sccs != tsccs { + println!("{:?}", + Dot::with_config(&g, &[Config::EdgeNoLabel, + Config::NodeIndexLabel])); + println!("Sccs {:?}", sccs); + println!("Sccs (Reversed) {:?}", tsccs); + return false; + } + true + } +} + +#[test] +fn graph_condensation_acyclic() { + fn prop(g: Graph<(), ()>) -> bool { + !is_cyclic_directed(&condensation(g, /* make_acyclic */ true)) + } + quickcheck::quickcheck(prop as fn(_) -> bool); +} + +#[derive(Debug, Clone)] +struct DAG<N: Default + Clone + Send + 'static>(Graph<N, ()>); + +impl<N: Default + Clone + Send + 'static> quickcheck::Arbitrary for DAG<N> { + fn arbitrary<G: quickcheck::Gen>(g: &mut G) -> Self { + let nodes = usize::arbitrary(g); + if nodes == 0 { + return DAG(Graph::with_capacity(0, 0)); + } + let split = g.gen_range(0., 1.); + let max_width = f64::sqrt(nodes as f64) as usize; + let tall = (max_width as f64 * split) as usize; + let fat = max_width - tall; + + let edge_prob = 1. - (1. - g.gen_range(0., 1.)) * (1. - g.gen_range(0., 1.)); + let edges = ((nodes as f64).powi(2) * edge_prob) as usize; + let mut gr = Graph::with_capacity(nodes, edges); + let mut nodes = 0; + for _ in 0..tall { + let cur_nodes = g.gen_range(0, fat); + for _ in 0..cur_nodes { + gr.add_node(N::default()); + } + for j in 0..nodes { + for k in 0..cur_nodes { + if g.gen_range(0., 1.) < edge_prob { + gr.add_edge(NodeIndex::new(j), NodeIndex::new(k + nodes), ()); + } + } + } + nodes += cur_nodes; + } + DAG(gr) + } + + // shrink the graph by splitting it in two by a very + // simple algorithm, just even and odd node indices + fn shrink(&self) -> Box<dyn Iterator<Item = Self>> { + let self_ = self.clone(); + Box::new((0..2).filter_map(move |x| { + let gr = self_.0.filter_map( + |i, w| { + if i.index() % 2 == x { + Some(w.clone()) + } else { + None + } + }, + |_, w| Some(w.clone()), + ); + // make sure we shrink + if gr.node_count() < self_.0.node_count() { + Some(DAG(gr)) + } else { + None + } + })) + } +} + +fn is_topo_order<N>(gr: &Graph<N, (), Directed>, order: &[NodeIndex]) -> bool { + if gr.node_count() != order.len() { + println!( + "Graph ({}) and count ({}) had different amount of nodes.", + gr.node_count(), + order.len() + ); + return false; + } + // check all the edges of the graph + for edge in gr.raw_edges() { + let a = edge.source(); + let b = edge.target(); + let ai = order.find(&a).unwrap(); + let bi = order.find(&b).unwrap(); + if ai >= bi { + println!("{:?} > {:?} ", a, b); + return false; + } + } + true +} + +fn subset_is_topo_order<N>(gr: &Graph<N, (), Directed>, order: &[NodeIndex]) -> bool { + if gr.node_count() < order.len() { + println!( + "Graph (len={}) had less nodes than order (len={})", + gr.node_count(), + order.len() + ); + return false; + } + // check all the edges of the graph + for edge in gr.raw_edges() { + let a = edge.source(); + let b = edge.target(); + if a == b { + continue; + } + // skip those that are not in the subset + let ai = match order.find(&a) { + Some(i) => i, + None => continue, + }; + let bi = match order.find(&b) { + Some(i) => i, + None => continue, + }; + if ai >= bi { + println!("{:?} > {:?} ", a, b); + return false; + } + } + true +} + +#[test] +fn full_topo() { + fn prop(DAG(gr): DAG<()>) -> bool { + let order = toposort(&gr, None).unwrap(); + is_topo_order(&gr, &order) + } + quickcheck::quickcheck(prop as fn(_) -> bool); +} + +#[test] +fn full_topo_generic() { + fn prop_generic(DAG(mut gr): DAG<usize>) -> bool { + assert!(!is_cyclic_directed(&gr)); + let mut index = 0; + let mut topo = Topo::new(&gr); + while let Some(nx) = topo.next(&gr) { + gr[nx] = index; + index += 1; + } + + let mut order = Vec::new(); + index = 0; + let mut topo = Topo::new(&gr); + while let Some(nx) = topo.next(&gr) { + order.push(nx); + assert_eq!(gr[nx], index); + index += 1; + } + if !is_topo_order(&gr, &order) { + println!("{:?}", gr); + return false; + } + + { + order.clear(); + let mut topo = Topo::new(&gr); + while let Some(nx) = topo.next(&gr) { + order.push(nx); + } + if !is_topo_order(&gr, &order) { + println!("{:?}", gr); + return false; + } + } + true + } + quickcheck::quickcheck(prop_generic as fn(_) -> bool); +} + +quickcheck! { + // checks that the distances computed by dijkstra satisfy the triangle + // inequality. + fn dijkstra_triangle_ineq(g: Graph<u32, u32>, node: usize) -> bool { + if g.node_count() == 0 { + return true; + } + let v = node_index(node % g.node_count()); + let distances = dijkstra(&g, v, None, |e| *e.weight()); + for v2 in distances.keys() { + let dv2 = distances[v2]; + // triangle inequality: + // d(v,u) <= d(v,v2) + w(v2,u) + for edge in g.edges(*v2) { + let u = edge.target(); + let w = edge.weight(); + if distances.contains_key(&u) && distances[&u] > dv2 + w { + return false; + } + } + } + true + } +} + +fn set<I>(iter: I) -> HashSet<I::Item> +where + I: IntoIterator, + I::Item: Hash + Eq, +{ + iter.into_iter().collect() +} + +quickcheck! { + fn dfs_visit(gr: Graph<(), ()>, node: usize) -> bool { + use petgraph::visit::{Visitable, VisitMap}; + use petgraph::visit::DfsEvent::*; + use petgraph::visit::{Time, depth_first_search}; + if gr.node_count() == 0 { + return true; + } + let start_node = node_index(node % gr.node_count()); + + let invalid_time = Time(!0); + let mut discover_time = vec![invalid_time; gr.node_count()]; + let mut finish_time = vec![invalid_time; gr.node_count()]; + let mut has_tree_edge = gr.visit_map(); + let mut edges = HashSet::new(); + depth_first_search(&gr, Some(start_node).into_iter().chain(gr.node_indices()), + |evt| { + match evt { + Discover(n, t) => discover_time[n.index()] = t, + Finish(n, t) => finish_time[n.index()] = t, + TreeEdge(u, v) => { + // v is an ancestor of u + assert!(has_tree_edge.visit(v), "Two tree edges to {:?}!", v); + assert!(discover_time[v.index()] == invalid_time); + assert!(discover_time[u.index()] != invalid_time); + assert!(finish_time[u.index()] == invalid_time); + edges.insert((u, v)); + } + BackEdge(u, v) => { + // u is an ancestor of v + assert!(discover_time[v.index()] != invalid_time); + assert!(finish_time[v.index()] == invalid_time); + edges.insert((u, v)); + } + CrossForwardEdge(u, v) => { + edges.insert((u, v)); + } + } + }); + assert!(discover_time.iter().all(|x| *x != invalid_time)); + assert!(finish_time.iter().all(|x| *x != invalid_time)); + assert_eq!(edges.len(), gr.edge_count()); + assert_eq!(edges, set(gr.edge_references().map(|e| (e.source(), e.target())))); + true + } +} + +quickcheck! { + fn test_bellman_ford(gr: Graph<(), f32>) -> bool { + let mut gr = gr; + for elt in gr.edge_weights_mut() { + *elt = elt.abs(); + } + if gr.node_count() == 0 { + return true; + } + for (i, start) in gr.node_indices().enumerate() { + if i >= 10 { break; } // testing all is too slow + bellman_ford(&gr, start).unwrap(); + } + true + } +} + +quickcheck! { + fn test_bellman_ford_undir(gr: Graph<(), f32, Undirected>) -> bool { + let mut gr = gr; + for elt in gr.edge_weights_mut() { + *elt = elt.abs(); + } + if gr.node_count() == 0 { + return true; + } + for (i, start) in gr.node_indices().enumerate() { + if i >= 10 { break; } // testing all is too slow + bellman_ford(&gr, start).unwrap(); + } + true + } +} + +defmac!(iter_eq a, b => a.eq(b)); +defmac!(nodes_eq ref a, ref b => a.node_references().eq(b.node_references())); +defmac!(edgew_eq ref a, ref b => a.edge_references().eq(b.edge_references())); +defmac!(edges_eq ref a, ref b => + iter_eq!( + a.edge_references().map(|e| (e.source(), e.target())), + b.edge_references().map(|e| (e.source(), e.target())))); + +quickcheck! { + fn test_di_from(gr1: DiGraph<i32, i32>) -> () { + let sgr = StableGraph::from(gr1.clone()); + let gr2 = Graph::from(sgr); + + assert!(nodes_eq!(gr1, gr2)); + assert!(edgew_eq!(gr1, gr2)); + assert!(edges_eq!(gr1, gr2)); + } + fn test_un_from(gr1: UnGraph<i32, i32>) -> () { + let sgr = StableGraph::from(gr1.clone()); + let gr2 = Graph::from(sgr); + + assert!(nodes_eq!(gr1, gr2)); + assert!(edgew_eq!(gr1, gr2)); + assert!(edges_eq!(gr1, gr2)); + } + + fn test_graph_from_stable_graph(gr1: StableDiGraph<usize, usize>) -> () { + let mut gr1 = gr1; + let gr2 = Graph::from(gr1.clone()); + + // renumber the stablegraph nodes and put the new index in the + // associated data + let mut index = 0; + for i in 0..gr1.node_bound() { + let ni = node_index(i); + if gr1.contains_node(ni) { + gr1[ni] = index; + index += 1; + } + } + if let Some(edge_bound) = gr1.edge_references().next_back() + .map(|ed| ed.id().index() + 1) + { + index = 0; + for i in 0..edge_bound { + let ni = edge_index(i); + if gr1.edge_weight(ni).is_some() { + gr1[ni] = index; + index += 1; + } + } + } + + assert_equal( + // Remap the stablegraph to compact indices + gr1.edge_references().map(|ed| (edge_index(*ed.weight()), gr1[ed.source()], gr1[ed.target()])), + gr2.edge_references().map(|ed| (ed.id(), ed.source().index(), ed.target().index())) + ); + } + + fn stable_di_graph_map_id(gr1: StableDiGraph<usize, usize>) -> () { + let gr2 = gr1.map(|_, &nw| nw, |_, &ew| ew); + assert!(nodes_eq!(gr1, gr2)); + assert!(edgew_eq!(gr1, gr2)); + assert!(edges_eq!(gr1, gr2)); + } + + fn stable_un_graph_map_id(gr1: StableUnGraph<usize, usize>) -> () { + let gr2 = gr1.map(|_, &nw| nw, |_, &ew| ew); + assert!(nodes_eq!(gr1, gr2)); + assert!(edgew_eq!(gr1, gr2)); + assert!(edges_eq!(gr1, gr2)); + } + + fn stable_di_graph_filter_map_id(gr1: StableDiGraph<usize, usize>) -> () { + let gr2 = gr1.filter_map(|_, &nw| Some(nw), |_, &ew| Some(ew)); + assert!(nodes_eq!(gr1, gr2)); + assert!(edgew_eq!(gr1, gr2)); + assert!(edges_eq!(gr1, gr2)); + } + + fn test_stable_un_graph_filter_map_id(gr1: StableUnGraph<usize, usize>) -> () { + let gr2 = gr1.filter_map(|_, &nw| Some(nw), |_, &ew| Some(ew)); + assert!(nodes_eq!(gr1, gr2)); + assert!(edgew_eq!(gr1, gr2)); + assert!(edges_eq!(gr1, gr2)); + } + + fn stable_di_graph_filter_map_remove(gr1: Small<StableDiGraph<i32, i32>>, + nodes: Vec<usize>, + edges: Vec<usize>) -> () + { + let gr2 = gr1.filter_map(|ix, &nw| { + if !nodes.contains(&ix.index()) { Some(nw) } else { None } + }, + |ix, &ew| { + if !edges.contains(&ix.index()) { Some(ew) } else { None } + }); + let check_nodes = &set(gr1.node_indices()) - &set(cloned(&nodes).map(node_index)); + let mut check_edges = &set(gr1.edge_indices()) - &set(cloned(&edges).map(edge_index)); + // remove all edges with endpoint in removed nodes + for edge in gr1.edge_references() { + if nodes.contains(&edge.source().index()) || + nodes.contains(&edge.target().index()) { + check_edges.remove(&edge.id()); + } + } + // assert maintained + for i in check_nodes { + assert_eq!(gr1[i], gr2[i]); + } + for i in check_edges { + assert_eq!(gr1[i], gr2[i]); + assert_eq!(gr1.edge_endpoints(i), gr2.edge_endpoints(i)); + } + + // assert removals + for i in nodes { + assert!(gr2.node_weight(node_index(i)).is_none()); + } + for i in edges { + assert!(gr2.edge_weight(edge_index(i)).is_none()); + } + } +} |