summaryrefslogtreecommitdiffstats
path: root/vendor/regex-syntax/src/hir/print.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/regex-syntax/src/hir/print.rs')
-rw-r--r--vendor/regex-syntax/src/hir/print.rs394
1 files changed, 302 insertions, 92 deletions
diff --git a/vendor/regex-syntax/src/hir/print.rs b/vendor/regex-syntax/src/hir/print.rs
index b71f3897c..fcb7cd252 100644
--- a/vendor/regex-syntax/src/hir/print.rs
+++ b/vendor/regex-syntax/src/hir/print.rs
@@ -2,11 +2,16 @@
This module provides a regular expression printer for `Hir`.
*/
-use std::fmt;
+use core::fmt;
-use crate::hir::visitor::{self, Visitor};
-use crate::hir::{self, Hir, HirKind};
-use crate::is_meta_character;
+use crate::{
+ hir::{
+ self,
+ visitor::{self, Visitor},
+ Hir, HirKind,
+ },
+ is_meta_character,
+};
/// A builder for constructing a printer.
///
@@ -84,21 +89,54 @@ impl<W: fmt::Write> Visitor for Writer<W> {
fn visit_pre(&mut self, hir: &Hir) -> fmt::Result {
match *hir.kind() {
- HirKind::Empty
- | HirKind::Repetition(_)
- | HirKind::Concat(_)
- | HirKind::Alternation(_) => {}
- HirKind::Literal(hir::Literal::Unicode(c)) => {
- self.write_literal_char(c)?;
- }
- HirKind::Literal(hir::Literal::Byte(b)) => {
- self.write_literal_byte(b)?;
+ // Empty is represented by nothing in the concrete syntax, and
+ // repetition operators are strictly suffix oriented.
+ HirKind::Empty | HirKind::Repetition(_) => {}
+ HirKind::Literal(hir::Literal(ref bytes)) => {
+ // See the comment on the 'Concat' and 'Alternation' case below
+ // for why we put parens here. Literals are, conceptually,
+ // a special case of concatenation where each element is a
+ // character. The HIR flattens this into a Box<[u8]>, but we
+ // still need to treat it like a concatenation for correct
+ // printing. As a special case, we don't write parens if there
+ // is only one character. One character means there is no
+ // concat so we don't need parens. Adding parens would still be
+ // correct, but we drop them here because it tends to create
+ // rather noisy regexes even in simple cases.
+ let result = core::str::from_utf8(bytes);
+ let len = result.map_or(bytes.len(), |s| s.chars().count());
+ if len > 1 {
+ self.wtr.write_str(r"(?:")?;
+ }
+ match result {
+ Ok(string) => {
+ for c in string.chars() {
+ self.write_literal_char(c)?;
+ }
+ }
+ Err(_) => {
+ for &b in bytes.iter() {
+ self.write_literal_byte(b)?;
+ }
+ }
+ }
+ if len > 1 {
+ self.wtr.write_str(r")")?;
+ }
}
HirKind::Class(hir::Class::Unicode(ref cls)) => {
+ if cls.ranges().is_empty() {
+ return self.wtr.write_str("[a&&b]");
+ }
self.wtr.write_str("[")?;
for range in cls.iter() {
if range.start() == range.end() {
self.write_literal_char(range.start())?;
+ } else if u32::from(range.start()) + 1
+ == u32::from(range.end())
+ {
+ self.write_literal_char(range.start())?;
+ self.write_literal_char(range.end())?;
} else {
self.write_literal_char(range.start())?;
self.wtr.write_str("-")?;
@@ -108,10 +146,16 @@ impl<W: fmt::Write> Visitor for Writer<W> {
self.wtr.write_str("]")?;
}
HirKind::Class(hir::Class::Bytes(ref cls)) => {
+ if cls.ranges().is_empty() {
+ return self.wtr.write_str("[a&&b]");
+ }
self.wtr.write_str("(?-u:[")?;
for range in cls.iter() {
if range.start() == range.end() {
self.write_literal_class_byte(range.start())?;
+ } else if range.start() + 1 == range.end() {
+ self.write_literal_class_byte(range.start())?;
+ self.write_literal_class_byte(range.end())?;
} else {
self.write_literal_class_byte(range.start())?;
self.wtr.write_str("-")?;
@@ -120,41 +164,60 @@ impl<W: fmt::Write> Visitor for Writer<W> {
}
self.wtr.write_str("])")?;
}
- HirKind::Anchor(hir::Anchor::StartLine) => {
- self.wtr.write_str("(?m:^)")?;
- }
- HirKind::Anchor(hir::Anchor::EndLine) => {
- self.wtr.write_str("(?m:$)")?;
- }
- HirKind::Anchor(hir::Anchor::StartText) => {
- self.wtr.write_str(r"\A")?;
- }
- HirKind::Anchor(hir::Anchor::EndText) => {
- self.wtr.write_str(r"\z")?;
- }
- HirKind::WordBoundary(hir::WordBoundary::Unicode) => {
- self.wtr.write_str(r"\b")?;
- }
- HirKind::WordBoundary(hir::WordBoundary::UnicodeNegate) => {
- self.wtr.write_str(r"\B")?;
- }
- HirKind::WordBoundary(hir::WordBoundary::Ascii) => {
- self.wtr.write_str(r"(?-u:\b)")?;
- }
- HirKind::WordBoundary(hir::WordBoundary::AsciiNegate) => {
- self.wtr.write_str(r"(?-u:\B)")?;
- }
- HirKind::Group(ref x) => match x.kind {
- hir::GroupKind::CaptureIndex(_) => {
- self.wtr.write_str("(")?;
+ HirKind::Look(ref look) => match *look {
+ hir::Look::Start => {
+ self.wtr.write_str(r"\A")?;
+ }
+ hir::Look::End => {
+ self.wtr.write_str(r"\z")?;
+ }
+ hir::Look::StartLF => {
+ self.wtr.write_str("(?m:^)")?;
+ }
+ hir::Look::EndLF => {
+ self.wtr.write_str("(?m:$)")?;
+ }
+ hir::Look::StartCRLF => {
+ self.wtr.write_str("(?mR:^)")?;
}
- hir::GroupKind::CaptureName { ref name, .. } => {
- write!(self.wtr, "(?P<{}>", name)?;
+ hir::Look::EndCRLF => {
+ self.wtr.write_str("(?mR:$)")?;
}
- hir::GroupKind::NonCapturing => {
- self.wtr.write_str("(?:")?;
+ hir::Look::WordAscii => {
+ self.wtr.write_str(r"(?-u:\b)")?;
+ }
+ hir::Look::WordAsciiNegate => {
+ self.wtr.write_str(r"(?-u:\B)")?;
+ }
+ hir::Look::WordUnicode => {
+ self.wtr.write_str(r"\b")?;
+ }
+ hir::Look::WordUnicodeNegate => {
+ self.wtr.write_str(r"\B")?;
}
},
+ HirKind::Capture(hir::Capture { ref name, .. }) => {
+ self.wtr.write_str("(")?;
+ if let Some(ref name) = *name {
+ write!(self.wtr, "?P<{}>", name)?;
+ }
+ }
+ // Why do this? Wrapping concats and alts in non-capturing groups
+ // is not *always* necessary, but is sometimes necessary. For
+ // example, 'concat(a, alt(b, c))' should be written as 'a(?:b|c)'
+ // and not 'ab|c'. The former is clearly the intended meaning, but
+ // the latter is actually 'alt(concat(a, b), c)'.
+ //
+ // It would be possible to only group these things in cases where
+ // it's strictly necessary, but it requires knowing the parent
+ // expression. And since this technique is simpler and always
+ // correct, we take this route. More to the point, it is a non-goal
+ // of an HIR printer to show a nice easy-to-read regex. Indeed,
+ // its construction forbids it from doing so. Therefore, inserting
+ // extra groups where they aren't necessary is perfectly okay.
+ HirKind::Concat(_) | HirKind::Alternation(_) => {
+ self.wtr.write_str(r"(?:")?;
+ }
}
Ok(())
}
@@ -165,39 +228,42 @@ impl<W: fmt::Write> Visitor for Writer<W> {
HirKind::Empty
| HirKind::Literal(_)
| HirKind::Class(_)
- | HirKind::Anchor(_)
- | HirKind::WordBoundary(_)
- | HirKind::Concat(_)
- | HirKind::Alternation(_) => {}
+ | HirKind::Look(_) => {}
HirKind::Repetition(ref x) => {
- match x.kind {
- hir::RepetitionKind::ZeroOrOne => {
+ match (x.min, x.max) {
+ (0, Some(1)) => {
self.wtr.write_str("?")?;
}
- hir::RepetitionKind::ZeroOrMore => {
+ (0, None) => {
self.wtr.write_str("*")?;
}
- hir::RepetitionKind::OneOrMore => {
+ (1, None) => {
self.wtr.write_str("+")?;
}
- hir::RepetitionKind::Range(ref x) => match *x {
- hir::RepetitionRange::Exactly(m) => {
- write!(self.wtr, "{{{}}}", m)?;
- }
- hir::RepetitionRange::AtLeast(m) => {
- write!(self.wtr, "{{{},}}", m)?;
- }
- hir::RepetitionRange::Bounded(m, n) => {
- write!(self.wtr, "{{{},{}}}", m, n)?;
- }
- },
+ (1, Some(1)) => {
+ // 'a{1}' and 'a{1}?' are exactly equivalent to 'a'.
+ return Ok(());
+ }
+ (m, None) => {
+ write!(self.wtr, "{{{},}}", m)?;
+ }
+ (m, Some(n)) if m == n => {
+ write!(self.wtr, "{{{}}}", m)?;
+ // a{m} and a{m}? are always exactly equivalent.
+ return Ok(());
+ }
+ (m, Some(n)) => {
+ write!(self.wtr, "{{{},{}}}", m, n)?;
+ }
}
if !x.greedy {
self.wtr.write_str("?")?;
}
}
- HirKind::Group(_) => {
- self.wtr.write_str(")")?;
+ HirKind::Capture(_)
+ | HirKind::Concat(_)
+ | HirKind::Alternation(_) => {
+ self.wtr.write_str(r")")?;
}
}
Ok(())
@@ -217,18 +283,16 @@ impl<W: fmt::Write> Writer<W> {
}
fn write_literal_byte(&mut self, b: u8) -> fmt::Result {
- let c = b as char;
- if c <= 0x7F as char && !c.is_control() && !c.is_whitespace() {
- self.write_literal_char(c)
+ if b <= 0x7F && !b.is_ascii_control() && !b.is_ascii_whitespace() {
+ self.write_literal_char(char::try_from(b).unwrap())
} else {
write!(self.wtr, "(?-u:\\x{:02X})", b)
}
}
fn write_literal_class_byte(&mut self, b: u8) -> fmt::Result {
- let c = b as char;
- if c <= 0x7F as char && !c.is_control() && !c.is_whitespace() {
- self.write_literal_char(c)
+ if b <= 0x7F && !b.is_ascii_control() && !b.is_ascii_whitespace() {
+ self.write_literal_char(char::try_from(b).unwrap())
} else {
write!(self.wtr, "\\x{:02X}", b)
}
@@ -237,15 +301,21 @@ impl<W: fmt::Write> Writer<W> {
#[cfg(test)]
mod tests {
- use super::Printer;
+ use alloc::{
+ boxed::Box,
+ string::{String, ToString},
+ };
+
use crate::ParserBuilder;
+ use super::*;
+
fn roundtrip(given: &str, expected: &str) {
roundtrip_with(|b| b, given, expected);
}
fn roundtrip_bytes(given: &str, expected: &str) {
- roundtrip_with(|b| b.allow_invalid_utf8(true), given, expected);
+ roundtrip_with(|b| b.utf8(false), given, expected);
}
fn roundtrip_with<F>(mut f: F, given: &str, expected: &str)
@@ -277,28 +347,35 @@ mod tests {
#[test]
fn print_class() {
- roundtrip(r"[a]", r"[a]");
+ roundtrip(r"[a]", r"a");
+ roundtrip(r"[ab]", r"[ab]");
roundtrip(r"[a-z]", r"[a-z]");
roundtrip(r"[a-z--b-c--x-y]", r"[ad-wz]");
- roundtrip(r"[^\x01-\u{10FFFF}]", "[\u{0}]");
- roundtrip(r"[-]", r"[\-]");
+ roundtrip(r"[^\x01-\u{10FFFF}]", "\u{0}");
+ roundtrip(r"[-]", r"\-");
roundtrip(r"[☃-⛄]", r"[☃-⛄]");
- roundtrip(r"(?-u)[a]", r"(?-u:[a])");
+ roundtrip(r"(?-u)[a]", r"a");
+ roundtrip(r"(?-u)[ab]", r"(?-u:[ab])");
roundtrip(r"(?-u)[a-z]", r"(?-u:[a-z])");
roundtrip_bytes(r"(?-u)[a-\xFF]", r"(?-u:[a-\xFF])");
// The following test that the printer escapes meta characters
// in character classes.
- roundtrip(r"[\[]", r"[\[]");
+ roundtrip(r"[\[]", r"\[");
roundtrip(r"[Z-_]", r"[Z-_]");
roundtrip(r"[Z-_--Z]", r"[\[-_]");
// The following test that the printer escapes meta characters
// in byte oriented character classes.
- roundtrip_bytes(r"(?-u)[\[]", r"(?-u:[\[])");
+ roundtrip_bytes(r"(?-u)[\[]", r"\[");
roundtrip_bytes(r"(?-u)[Z-_]", r"(?-u:[Z-_])");
roundtrip_bytes(r"(?-u)[Z-_--Z]", r"(?-u:[\[-_])");
+
+ // This tests that an empty character class is correctly roundtripped.
+ #[cfg(feature = "unicode-gencat")]
+ roundtrip(r"\P{any}", r"[a&&b]");
+ roundtrip_bytes(r"(?-u)[^\x00-\xFF]", r"[a&&b]");
}
#[test]
@@ -331,37 +408,170 @@ mod tests {
roundtrip("a+?", "a+?");
roundtrip("(?U)a+", "a+?");
- roundtrip("a{1}", "a{1}");
- roundtrip("a{1,}", "a{1,}");
+ roundtrip("a{1}", "a");
+ roundtrip("a{2}", "a{2}");
+ roundtrip("a{1,}", "a+");
roundtrip("a{1,5}", "a{1,5}");
- roundtrip("a{1}?", "a{1}?");
- roundtrip("a{1,}?", "a{1,}?");
+ roundtrip("a{1}?", "a");
+ roundtrip("a{2}?", "a{2}");
+ roundtrip("a{1,}?", "a+?");
roundtrip("a{1,5}?", "a{1,5}?");
- roundtrip("(?U)a{1}", "a{1}?");
- roundtrip("(?U)a{1,}", "a{1,}?");
+ roundtrip("(?U)a{1}", "a");
+ roundtrip("(?U)a{2}", "a{2}");
+ roundtrip("(?U)a{1,}", "a+?");
roundtrip("(?U)a{1,5}", "a{1,5}?");
+
+ // Test that various zero-length repetitions always translate to an
+ // empty regex. This is more a property of HIR's smart constructors
+ // than the printer though.
+ roundtrip("a{0}", "");
+ roundtrip("(?:ab){0}", "");
+ #[cfg(feature = "unicode-gencat")]
+ {
+ roundtrip(r"\p{any}{0}", "");
+ roundtrip(r"\P{any}{0}", "");
+ }
}
#[test]
fn print_group() {
roundtrip("()", "()");
roundtrip("(?P<foo>)", "(?P<foo>)");
- roundtrip("(?:)", "(?:)");
+ roundtrip("(?:)", "");
roundtrip("(a)", "(a)");
roundtrip("(?P<foo>a)", "(?P<foo>a)");
- roundtrip("(?:a)", "(?:a)");
+ roundtrip("(?:a)", "a");
roundtrip("((((a))))", "((((a))))");
}
#[test]
fn print_alternation() {
- roundtrip("|", "|");
- roundtrip("||", "||");
+ roundtrip("|", "(?:|)");
+ roundtrip("||", "(?:||)");
+
+ roundtrip("a|b", "[ab]");
+ roundtrip("ab|cd", "(?:(?:ab)|(?:cd))");
+ roundtrip("a|b|c", "[a-c]");
+ roundtrip("ab|cd|ef", "(?:(?:ab)|(?:cd)|(?:ef))");
+ roundtrip("foo|bar|quux", "(?:(?:foo)|(?:bar)|(?:quux))");
+ }
- roundtrip("a|b", "a|b");
- roundtrip("a|b|c", "a|b|c");
- roundtrip("foo|bar|quux", "foo|bar|quux");
+ // This is a regression test that stresses a peculiarity of how the HIR
+ // is both constructed and printed. Namely, it is legal for a repetition
+ // to directly contain a concatenation. This particular construct isn't
+ // really possible to build from the concrete syntax directly, since you'd
+ // be forced to put the concatenation into (at least) a non-capturing
+ // group. Concurrently, the printer doesn't consider this case and just
+ // kind of naively prints the child expression and tacks on the repetition
+ // operator.
+ //
+ // As a result, if you attached '+' to a 'concat(a, b)', the printer gives
+ // you 'ab+', but clearly it really should be '(?:ab)+'.
+ //
+ // This bug isn't easy to surface because most ways of building an HIR
+ // come directly from the concrete syntax, and as mentioned above, it just
+ // isn't possible to build this kind of HIR from the concrete syntax.
+ // Nevertheless, this is definitely a bug.
+ //
+ // See: https://github.com/rust-lang/regex/issues/731
+ #[test]
+ fn regression_repetition_concat() {
+ let expr = Hir::concat(alloc::vec![
+ Hir::literal("x".as_bytes()),
+ Hir::repetition(hir::Repetition {
+ min: 1,
+ max: None,
+ greedy: true,
+ sub: Box::new(Hir::literal("ab".as_bytes())),
+ }),
+ Hir::literal("y".as_bytes()),
+ ]);
+ assert_eq!(r"(?:x(?:ab)+y)", expr.to_string());
+
+ let expr = Hir::concat(alloc::vec![
+ Hir::look(hir::Look::Start),
+ Hir::repetition(hir::Repetition {
+ min: 1,
+ max: None,
+ greedy: true,
+ sub: Box::new(Hir::concat(alloc::vec![
+ Hir::look(hir::Look::Start),
+ Hir::look(hir::Look::End),
+ ])),
+ }),
+ Hir::look(hir::Look::End),
+ ]);
+ assert_eq!(r"(?:\A(?:\A\z)+\z)", expr.to_string());
+ }
+
+ // Just like regression_repetition_concat, but with the repetition using
+ // an alternation as a child expression instead.
+ //
+ // See: https://github.com/rust-lang/regex/issues/731
+ #[test]
+ fn regression_repetition_alternation() {
+ let expr = Hir::concat(alloc::vec![
+ Hir::literal("ab".as_bytes()),
+ Hir::repetition(hir::Repetition {
+ min: 1,
+ max: None,
+ greedy: true,
+ sub: Box::new(Hir::alternation(alloc::vec![
+ Hir::literal("cd".as_bytes()),
+ Hir::literal("ef".as_bytes()),
+ ])),
+ }),
+ Hir::literal("gh".as_bytes()),
+ ]);
+ assert_eq!(r"(?:(?:ab)(?:(?:cd)|(?:ef))+(?:gh))", expr.to_string());
+
+ let expr = Hir::concat(alloc::vec![
+ Hir::look(hir::Look::Start),
+ Hir::repetition(hir::Repetition {
+ min: 1,
+ max: None,
+ greedy: true,
+ sub: Box::new(Hir::alternation(alloc::vec![
+ Hir::look(hir::Look::Start),
+ Hir::look(hir::Look::End),
+ ])),
+ }),
+ Hir::look(hir::Look::End),
+ ]);
+ assert_eq!(r"(?:\A(?:\A|\z)+\z)", expr.to_string());
+ }
+
+ // This regression test is very similar in flavor to
+ // regression_repetition_concat in that the root of the issue lies in a
+ // peculiarity of how the HIR is represented and how the printer writes it
+ // out. Like the other regression, this one is also rooted in the fact that
+ // you can't produce the peculiar HIR from the concrete syntax. Namely, you
+ // just can't have a 'concat(a, alt(b, c))' because the 'alt' will normally
+ // be in (at least) a non-capturing group. Why? Because the '|' has very
+ // low precedence (lower that concatenation), and so something like 'ab|c'
+ // is actually 'alt(ab, c)'.
+ //
+ // See: https://github.com/rust-lang/regex/issues/516
+ #[test]
+ fn regression_alternation_concat() {
+ let expr = Hir::concat(alloc::vec![
+ Hir::literal("ab".as_bytes()),
+ Hir::alternation(alloc::vec![
+ Hir::literal("mn".as_bytes()),
+ Hir::literal("xy".as_bytes()),
+ ]),
+ ]);
+ assert_eq!(r"(?:(?:ab)(?:(?:mn)|(?:xy)))", expr.to_string());
+
+ let expr = Hir::concat(alloc::vec![
+ Hir::look(hir::Look::Start),
+ Hir::alternation(alloc::vec![
+ Hir::look(hir::Look::Start),
+ Hir::look(hir::Look::End),
+ ]),
+ ]);
+ assert_eq!(r"(?:\A(?:\A|\z))", expr.to_string());
}
}