diff options
Diffstat (limited to 'vendor/rustc_apfloat/src/ppc.rs')
-rw-r--r-- | vendor/rustc_apfloat/src/ppc.rs | 453 |
1 files changed, 453 insertions, 0 deletions
diff --git a/vendor/rustc_apfloat/src/ppc.rs b/vendor/rustc_apfloat/src/ppc.rs new file mode 100644 index 000000000..b03efff3e --- /dev/null +++ b/vendor/rustc_apfloat/src/ppc.rs @@ -0,0 +1,453 @@ +use crate::ieee; +use crate::{Category, ExpInt, Float, FloatConvert, ParseError, Round, Status, StatusAnd}; + +use core::cmp::Ordering; +use core::fmt; +use core::ops::Neg; + +#[must_use] +#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)] +pub struct DoubleFloat<F>(F, F); +pub type DoubleDouble = DoubleFloat<ieee::Double>; + +// These are legacy semantics for the Fallback, inaccrurate implementation of +// IBM double-double, if the accurate DoubleDouble doesn't handle the +// operation. It's equivalent to having an IEEE number with consecutive 106 +// bits of mantissa and 11 bits of exponent. +// +// It's not equivalent to IBM double-double. For example, a legit IBM +// double-double, 1 + epsilon: +// +// 1 + epsilon = 1 + (1 >> 1076) +// +// is not representable by a consecutive 106 bits of mantissa. +// +// Currently, these semantics are used in the following way: +// +// DoubleDouble -> (Double, Double) -> +// DoubleDouble's Fallback -> IEEE operations +// +// FIXME: Implement all operations in DoubleDouble, and delete these +// semantics. +// FIXME(eddyb) This shouldn't need to be `pub`, it's only used in bounds. +pub struct FallbackS<F>(F); +type Fallback<F> = ieee::IeeeFloat<FallbackS<F>>; +impl<F: Float> ieee::Semantics for FallbackS<F> { + // Forbid any conversion to/from bits. + const BITS: usize = 0; + const EXP_BITS: usize = 0; + + const PRECISION: usize = F::PRECISION * 2; + const MAX_EXP: ExpInt = F::MAX_EXP as ExpInt; + const MIN_EXP: ExpInt = F::MIN_EXP as ExpInt + F::PRECISION as ExpInt; +} + +// Convert number to F. To avoid spurious underflows, we re- +// normalize against the F exponent range first, and only *then* +// truncate the mantissa. The result of that second conversion +// may be inexact, but should never underflow. +// FIXME(eddyb) This shouldn't need to be `pub`, it's only used in bounds. +pub struct FallbackExtendedS<F>(F); +type FallbackExtended<F> = ieee::IeeeFloat<FallbackExtendedS<F>>; +impl<F: Float> ieee::Semantics for FallbackExtendedS<F> { + // Forbid any conversion to/from bits. + const BITS: usize = 0; + const EXP_BITS: usize = 0; + + const PRECISION: usize = Fallback::<F>::PRECISION; + const MAX_EXP: ExpInt = F::MAX_EXP as ExpInt; + const MIN_EXP: ExpInt = F::MIN_EXP as ExpInt; +} + +impl<F: Float> From<Fallback<F>> for DoubleFloat<F> +where + F: FloatConvert<FallbackExtended<F>>, + FallbackExtended<F>: FloatConvert<F>, +{ + fn from(x: Fallback<F>) -> Self { + let mut status; + let mut loses_info = false; + + let extended: FallbackExtended<F> = unpack!(status=, x.convert(&mut loses_info)); + assert_eq!((status, loses_info), (Status::OK, false)); + + let a = unpack!(status=, extended.convert(&mut loses_info)); + assert_eq!(status - Status::INEXACT, Status::OK); + + // If conversion was exact or resulted in a special case, we're done; + // just set the second double to zero. Otherwise, re-convert back to + // the extended format and compute the difference. This now should + // convert exactly to double. + let b = if a.is_finite_non_zero() && loses_info { + let u: FallbackExtended<F> = unpack!(status=, a.convert(&mut loses_info)); + assert_eq!((status, loses_info), (Status::OK, false)); + let v = unpack!(status=, extended - u); + assert_eq!(status, Status::OK); + let v = unpack!(status=, v.convert(&mut loses_info)); + assert_eq!((status, loses_info), (Status::OK, false)); + v + } else { + F::ZERO + }; + + DoubleFloat(a, b) + } +} + +impl<F: FloatConvert<Self>> From<DoubleFloat<F>> for Fallback<F> { + fn from(DoubleFloat(a, b): DoubleFloat<F>) -> Self { + let mut status; + let mut loses_info = false; + + // Get the first F and convert to our format. + let a = unpack!(status=, a.convert(&mut loses_info)); + assert_eq!((status, loses_info), (Status::OK, false)); + + // Unless we have a special case, add in second F. + if a.is_finite_non_zero() { + let b = unpack!(status=, b.convert(&mut loses_info)); + assert_eq!((status, loses_info), (Status::OK, false)); + + (a + b).value + } else { + a + } + } +} + +float_common_impls!(DoubleFloat<F>); + +impl<F: Float> Neg for DoubleFloat<F> { + type Output = Self; + fn neg(self) -> Self { + if self.1.is_finite_non_zero() { + DoubleFloat(-self.0, -self.1) + } else { + DoubleFloat(-self.0, self.1) + } + } +} + +impl<F: FloatConvert<Fallback<F>>> fmt::Display for DoubleFloat<F> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Display::fmt(&Fallback::from(*self), f) + } +} + +impl<F: FloatConvert<Fallback<F>>> Float for DoubleFloat<F> +where + Self: From<Fallback<F>>, +{ + const BITS: usize = F::BITS * 2; + const PRECISION: usize = Fallback::<F>::PRECISION; + const MAX_EXP: ExpInt = Fallback::<F>::MAX_EXP; + const MIN_EXP: ExpInt = Fallback::<F>::MIN_EXP; + + const ZERO: Self = DoubleFloat(F::ZERO, F::ZERO); + + const INFINITY: Self = DoubleFloat(F::INFINITY, F::ZERO); + + // FIXME(eddyb) remove when qnan becomes const fn. + const NAN: Self = DoubleFloat(F::NAN, F::ZERO); + + fn qnan(payload: Option<u128>) -> Self { + DoubleFloat(F::qnan(payload), F::ZERO) + } + + fn snan(payload: Option<u128>) -> Self { + DoubleFloat(F::snan(payload), F::ZERO) + } + + fn largest() -> Self { + let status; + let mut r = DoubleFloat(F::largest(), F::largest()); + r.1 = r.1.scalbn(-(F::PRECISION as ExpInt + 1)); + r.1 = unpack!(status=, r.1.next_down()); + assert_eq!(status, Status::OK); + r + } + + const SMALLEST: Self = DoubleFloat(F::SMALLEST, F::ZERO); + + fn smallest_normalized() -> Self { + DoubleFloat(F::smallest_normalized().scalbn(F::PRECISION as ExpInt), F::ZERO) + } + + // Implement addition, subtraction, multiplication and division based on: + // "Software for Doubled-Precision Floating-Point Computations", + // by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283. + + fn add_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> { + match (self.category(), rhs.category()) { + (Category::Infinity, Category::Infinity) => { + if self.is_negative() != rhs.is_negative() { + Status::INVALID_OP.and(Self::NAN.copy_sign(self)) + } else { + Status::OK.and(self) + } + } + + (_, Category::Zero) | (Category::NaN, _) | (Category::Infinity, Category::Normal) => Status::OK.and(self), + + (Category::Zero, _) | (_, Category::NaN) | (_, Category::Infinity) => Status::OK.and(rhs), + + (Category::Normal, Category::Normal) => { + let mut status = Status::OK; + let (a, aa, c, cc) = (self.0, self.1, rhs.0, rhs.1); + let mut z = a; + z = unpack!(status|=, z.add_r(c, round)); + if !z.is_finite() { + if !z.is_infinite() { + return status.and(DoubleFloat(z, F::ZERO)); + } + status = Status::OK; + let a_cmp_c = a.cmp_abs_normal(c); + z = cc; + z = unpack!(status|=, z.add_r(aa, round)); + if a_cmp_c == Ordering::Greater { + // z = cc + aa + c + a; + z = unpack!(status|=, z.add_r(c, round)); + z = unpack!(status|=, z.add_r(a, round)); + } else { + // z = cc + aa + a + c; + z = unpack!(status|=, z.add_r(a, round)); + z = unpack!(status|=, z.add_r(c, round)); + } + if !z.is_finite() { + return status.and(DoubleFloat(z, F::ZERO)); + } + self.0 = z; + let mut zz = aa; + zz = unpack!(status|=, zz.add_r(cc, round)); + if a_cmp_c == Ordering::Greater { + // self.1 = a - z + c + zz; + self.1 = a; + self.1 = unpack!(status|=, self.1.sub_r(z, round)); + self.1 = unpack!(status|=, self.1.add_r(c, round)); + self.1 = unpack!(status|=, self.1.add_r(zz, round)); + } else { + // self.1 = c - z + a + zz; + self.1 = c; + self.1 = unpack!(status|=, self.1.sub_r(z, round)); + self.1 = unpack!(status|=, self.1.add_r(a, round)); + self.1 = unpack!(status|=, self.1.add_r(zz, round)); + } + } else { + // q = a - z; + let mut q = a; + q = unpack!(status|=, q.sub_r(z, round)); + + // zz = q + c + (a - (q + z)) + aa + cc; + // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies. + let mut zz = q; + zz = unpack!(status|=, zz.add_r(c, round)); + q = unpack!(status|=, q.add_r(z, round)); + q = unpack!(status|=, q.sub_r(a, round)); + q = -q; + zz = unpack!(status|=, zz.add_r(q, round)); + zz = unpack!(status|=, zz.add_r(aa, round)); + zz = unpack!(status|=, zz.add_r(cc, round)); + if zz.is_zero() && !zz.is_negative() { + return Status::OK.and(DoubleFloat(z, F::ZERO)); + } + self.0 = z; + self.0 = unpack!(status|=, self.0.add_r(zz, round)); + if !self.0.is_finite() { + self.1 = F::ZERO; + return status.and(self); + } + self.1 = z; + self.1 = unpack!(status|=, self.1.sub_r(self.0, round)); + self.1 = unpack!(status|=, self.1.add_r(zz, round)); + } + status.and(self) + } + } + } + + fn mul_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> { + // Interesting observation: For special categories, finding the lowest + // common ancestor of the following layered graph gives the correct + // return category: + // + // NaN + // / \ + // Zero Inf + // \ / + // Normal + // + // e.g. NaN * NaN = NaN + // Zero * Inf = NaN + // Normal * Zero = Zero + // Normal * Inf = Inf + match (self.category(), rhs.category()) { + (Category::NaN, _) => Status::OK.and(self), + + (_, Category::NaN) => Status::OK.and(rhs), + + (Category::Zero, Category::Infinity) | (Category::Infinity, Category::Zero) => Status::OK.and(Self::NAN), + + (Category::Zero, _) | (Category::Infinity, _) => Status::OK.and(self), + + (_, Category::Zero) | (_, Category::Infinity) => Status::OK.and(rhs), + + (Category::Normal, Category::Normal) => { + let mut status = Status::OK; + let (a, b, c, d) = (self.0, self.1, rhs.0, rhs.1); + // t = a * c + let mut t = a; + t = unpack!(status|=, t.mul_r(c, round)); + if !t.is_finite_non_zero() { + return status.and(DoubleFloat(t, F::ZERO)); + } + + // tau = fmsub(a, c, t), that is -fmadd(-a, c, t). + let mut tau = a; + tau = unpack!(status|=, tau.mul_add_r(c, -t, round)); + // v = a * d + let mut v = a; + v = unpack!(status|=, v.mul_r(d, round)); + // w = b * c + let mut w = b; + w = unpack!(status|=, w.mul_r(c, round)); + v = unpack!(status|=, v.add_r(w, round)); + // tau += v + w + tau = unpack!(status|=, tau.add_r(v, round)); + // u = t + tau + let mut u = t; + u = unpack!(status|=, u.add_r(tau, round)); + + self.0 = u; + if !u.is_finite() { + self.1 = F::ZERO; + } else { + // self.1 = (t - u) + tau + t = unpack!(status|=, t.sub_r(u, round)); + t = unpack!(status|=, t.add_r(tau, round)); + self.1 = t; + } + status.and(self) + } + } + } + + fn mul_add_r(self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self> { + Fallback::from(self) + .mul_add_r(Fallback::from(multiplicand), Fallback::from(addend), round) + .map(Self::from) + } + + fn div_r(self, rhs: Self, round: Round) -> StatusAnd<Self> { + Fallback::from(self).div_r(Fallback::from(rhs), round).map(Self::from) + } + + fn ieee_rem(self, rhs: Self) -> StatusAnd<Self> { + Fallback::from(self).ieee_rem(Fallback::from(rhs)).map(Self::from) + } + + fn c_fmod(self, rhs: Self) -> StatusAnd<Self> { + Fallback::from(self).c_fmod(Fallback::from(rhs)).map(Self::from) + } + + fn round_to_integral(self, round: Round) -> StatusAnd<Self> { + Fallback::from(self).round_to_integral(round).map(Self::from) + } + + fn next_up(self) -> StatusAnd<Self> { + Fallback::from(self).next_up().map(Self::from) + } + + fn from_bits(input: u128) -> Self { + let (a, b) = (input, input >> F::BITS); + DoubleFloat(F::from_bits(a & ((1 << F::BITS) - 1)), F::from_bits(b & ((1 << F::BITS) - 1))) + } + + fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self> { + Fallback::from_u128_r(input, round).map(Self::from) + } + + fn from_str_r(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> { + Fallback::from_str_r(s, round).map(|r| r.map(Self::from)) + } + + fn to_bits(self) -> u128 { + self.0.to_bits() | (self.1.to_bits() << F::BITS) + } + + fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128> { + Fallback::from(self).to_u128_r(width, round, is_exact) + } + + fn cmp_abs_normal(self, rhs: Self) -> Ordering { + self.0.cmp_abs_normal(rhs.0).then_with(|| { + let result = self.1.cmp_abs_normal(rhs.1); + if result != Ordering::Equal { + let against = self.0.is_negative() ^ self.1.is_negative(); + let rhs_against = rhs.0.is_negative() ^ rhs.1.is_negative(); + (!against) + .cmp(&!rhs_against) + .then_with(|| if against { result.reverse() } else { result }) + } else { + result + } + }) + } + + fn bitwise_eq(self, rhs: Self) -> bool { + self.0.bitwise_eq(rhs.0) && self.1.bitwise_eq(rhs.1) + } + + fn is_negative(self) -> bool { + self.0.is_negative() + } + + fn is_denormal(self) -> bool { + self.category() == Category::Normal + && (self.0.is_denormal() || self.0.is_denormal() || + // (double)(Hi + Lo) == Hi defines a normal number. + self.0 != (self.0 + self.1).value) + } + + fn is_signaling(self) -> bool { + self.0.is_signaling() + } + + fn category(self) -> Category { + self.0.category() + } + + fn is_integer(self) -> bool { + self.0.is_integer() && self.1.is_integer() + } + + fn get_exact_inverse(self) -> Option<Self> { + Fallback::from(self).get_exact_inverse().map(Self::from) + } + + fn ilogb(self) -> ExpInt { + self.0.ilogb() + } + + fn scalbn_r(self, exp: ExpInt, round: Round) -> Self { + DoubleFloat(self.0.scalbn_r(exp, round), self.1.scalbn_r(exp, round)) + } + + fn frexp_r(self, exp: &mut ExpInt, round: Round) -> Self { + let a = self.0.frexp_r(exp, round); + let mut b = self.1; + if self.category() == Category::Normal { + b = b.scalbn_r(-*exp, round); + } + DoubleFloat(a, b) + } +} + +// HACK(eddyb) this is here instead of in `tests/ppc.rs` because `DoubleFloat` +// has private fields, and it's not worth it to make them public just for testing. +#[test] +fn is_integer() { + let double_from_f64 = |f: f64| ieee::Double::from_bits(f.to_bits().into()); + assert!(DoubleFloat(double_from_f64(-0.0), double_from_f64(-0.0)).is_integer()); + assert!(!DoubleFloat(double_from_f64(3.14159), double_from_f64(-0.0)).is_integer()); + assert!(!DoubleFloat(double_from_f64(-0.0), double_from_f64(3.14159)).is_integer()); +} |