diff options
Diffstat (limited to 'vendor/tokio/src/time/interval.rs')
-rw-r--r-- | vendor/tokio/src/time/interval.rs | 447 |
1 files changed, 447 insertions, 0 deletions
diff --git a/vendor/tokio/src/time/interval.rs b/vendor/tokio/src/time/interval.rs new file mode 100644 index 000000000..a63e47b6e --- /dev/null +++ b/vendor/tokio/src/time/interval.rs @@ -0,0 +1,447 @@ +use crate::future::poll_fn; +use crate::time::{sleep_until, Duration, Instant, Sleep}; + +use std::pin::Pin; +use std::task::{Context, Poll}; +use std::{convert::TryInto, future::Future}; + +/// Creates new [`Interval`] that yields with interval of `period`. The first +/// tick completes immediately. The default [`MissedTickBehavior`] is +/// [`Burst`](MissedTickBehavior::Burst), but this can be configured +/// by calling [`set_missed_tick_behavior`](Interval::set_missed_tick_behavior). +/// +/// An interval will tick indefinitely. At any time, the [`Interval`] value can +/// be dropped. This cancels the interval. +/// +/// This function is equivalent to +/// [`interval_at(Instant::now(), period)`](interval_at). +/// +/// # Panics +/// +/// This function panics if `period` is zero. +/// +/// # Examples +/// +/// ``` +/// use tokio::time::{self, Duration}; +/// +/// #[tokio::main] +/// async fn main() { +/// let mut interval = time::interval(Duration::from_millis(10)); +/// +/// interval.tick().await; // ticks immediately +/// interval.tick().await; // ticks after 10ms +/// interval.tick().await; // ticks after 10ms +/// +/// // approximately 20ms have elapsed. +/// } +/// ``` +/// +/// A simple example using `interval` to execute a task every two seconds. +/// +/// The difference between `interval` and [`sleep`] is that an [`Interval`] +/// measures the time since the last tick, which means that [`.tick().await`] +/// may wait for a shorter time than the duration specified for the interval +/// if some time has passed between calls to [`.tick().await`]. +/// +/// If the tick in the example below was replaced with [`sleep`], the task +/// would only be executed once every three seconds, and not every two +/// seconds. +/// +/// ``` +/// use tokio::time; +/// +/// async fn task_that_takes_a_second() { +/// println!("hello"); +/// time::sleep(time::Duration::from_secs(1)).await +/// } +/// +/// #[tokio::main] +/// async fn main() { +/// let mut interval = time::interval(time::Duration::from_secs(2)); +/// for _i in 0..5 { +/// interval.tick().await; +/// task_that_takes_a_second().await; +/// } +/// } +/// ``` +/// +/// [`sleep`]: crate::time::sleep() +/// [`.tick().await`]: Interval::tick +pub fn interval(period: Duration) -> Interval { + assert!(period > Duration::new(0, 0), "`period` must be non-zero."); + + interval_at(Instant::now(), period) +} + +/// Creates new [`Interval`] that yields with interval of `period` with the +/// first tick completing at `start`. The default [`MissedTickBehavior`] is +/// [`Burst`](MissedTickBehavior::Burst), but this can be configured +/// by calling [`set_missed_tick_behavior`](Interval::set_missed_tick_behavior). +/// +/// An interval will tick indefinitely. At any time, the [`Interval`] value can +/// be dropped. This cancels the interval. +/// +/// # Panics +/// +/// This function panics if `period` is zero. +/// +/// # Examples +/// +/// ``` +/// use tokio::time::{interval_at, Duration, Instant}; +/// +/// #[tokio::main] +/// async fn main() { +/// let start = Instant::now() + Duration::from_millis(50); +/// let mut interval = interval_at(start, Duration::from_millis(10)); +/// +/// interval.tick().await; // ticks after 50ms +/// interval.tick().await; // ticks after 10ms +/// interval.tick().await; // ticks after 10ms +/// +/// // approximately 70ms have elapsed. +/// } +/// ``` +pub fn interval_at(start: Instant, period: Duration) -> Interval { + assert!(period > Duration::new(0, 0), "`period` must be non-zero."); + + Interval { + delay: Box::pin(sleep_until(start)), + period, + missed_tick_behavior: Default::default(), + } +} + +/// Defines the behavior of an [`Interval`] when it misses a tick. +/// +/// Sometimes, an [`Interval`]'s tick is missed. For example, consider the +/// following: +/// +/// ``` +/// use tokio::time::{self, Duration}; +/// # async fn task_that_takes_one_to_three_millis() {} +/// +/// #[tokio::main] +/// async fn main() { +/// // ticks every 2 seconds +/// let mut interval = time::interval(Duration::from_millis(2)); +/// for _ in 0..5 { +/// interval.tick().await; +/// // if this takes more than 2 milliseconds, a tick will be delayed +/// task_that_takes_one_to_three_millis().await; +/// } +/// } +/// ``` +/// +/// Generally, a tick is missed if too much time is spent without calling +/// [`Interval::tick()`]. +/// +/// By default, when a tick is missed, [`Interval`] fires ticks as quickly as it +/// can until it is "caught up" in time to where it should be. +/// `MissedTickBehavior` can be used to specify a different behavior for +/// [`Interval`] to exhibit. Each variant represents a different strategy. +/// +/// Note that because the executor cannot guarantee exact precision with timers, +/// these strategies will only apply when the delay is greater than 5 +/// milliseconds. +#[derive(Debug, Clone, Copy, PartialEq, Eq)] +pub enum MissedTickBehavior { + /// Tick as fast as possible until caught up. + /// + /// When this strategy is used, [`Interval`] schedules ticks "normally" (the + /// same as it would have if the ticks hadn't been delayed), which results + /// in it firing ticks as fast as possible until it is caught up in time to + /// where it should be. Unlike [`Delay`] and [`Skip`], the ticks yielded + /// when `Burst` is used (the [`Instant`]s that [`tick`](Interval::tick) + /// yields) aren't different than they would have been if a tick had not + /// been missed. Like [`Skip`], and unlike [`Delay`], the ticks may be + /// shortened. + /// + /// This looks something like this: + /// ```text + /// Expected ticks: | 1 | 2 | 3 | 4 | 5 | 6 | + /// Actual ticks: | work -----| delay | work | work | work -| work -----| + /// ``` + /// + /// In code: + /// + /// ``` + /// use tokio::time::{interval, Duration}; + /// # async fn task_that_takes_200_millis() {} + /// + /// # #[tokio::main(flavor = "current_thread")] + /// # async fn main() { + /// let mut interval = interval(Duration::from_millis(50)); + /// + /// task_that_takes_200_millis().await; + /// // The `Interval` has missed a tick + /// + /// // Since we have exceeded our timeout, this will resolve immediately + /// interval.tick().await; + /// + /// // Since we are more than 100ms after the start of `interval`, this will + /// // also resolve immediately. + /// interval.tick().await; + /// + /// // Also resolves immediately, because it was supposed to resolve at + /// // 150ms after the start of `interval` + /// interval.tick().await; + /// + /// // Resolves immediately + /// interval.tick().await; + /// + /// // Since we have gotten to 200ms after the start of `interval`, this + /// // will resolve after 50ms + /// interval.tick().await; + /// # } + /// ``` + /// + /// This is the default behavior when [`Interval`] is created with + /// [`interval`] and [`interval_at`]. + /// + /// [`Delay`]: MissedTickBehavior::Delay + /// [`Skip`]: MissedTickBehavior::Skip + Burst, + + /// Tick at multiples of `period` from when [`tick`] was called, rather than + /// from `start`. + /// + /// When this strategy is used and [`Interval`] has missed a tick, instead + /// of scheduling ticks to fire at multiples of `period` from `start` (the + /// time when the first tick was fired), it schedules all future ticks to + /// happen at a regular `period` from the point when [`tick`] was called. + /// Unlike [`Burst`] and [`Skip`], ticks are not shortened, and they aren't + /// guaranteed to happen at a multiple of `period` from `start` any longer. + /// + /// This looks something like this: + /// ```text + /// Expected ticks: | 1 | 2 | 3 | 4 | 5 | 6 | + /// Actual ticks: | work -----| delay | work -----| work -----| work -----| + /// ``` + /// + /// In code: + /// + /// ``` + /// use tokio::time::{interval, Duration, MissedTickBehavior}; + /// # async fn task_that_takes_more_than_50_millis() {} + /// + /// # #[tokio::main(flavor = "current_thread")] + /// # async fn main() { + /// let mut interval = interval(Duration::from_millis(50)); + /// interval.set_missed_tick_behavior(MissedTickBehavior::Delay); + /// + /// task_that_takes_more_than_50_millis().await; + /// // The `Interval` has missed a tick + /// + /// // Since we have exceeded our timeout, this will resolve immediately + /// interval.tick().await; + /// + /// // But this one, rather than also resolving immediately, as might happen + /// // with the `Burst` or `Skip` behaviors, will not resolve until + /// // 50ms after the call to `tick` up above. That is, in `tick`, when we + /// // recognize that we missed a tick, we schedule the next tick to happen + /// // 50ms (or whatever the `period` is) from right then, not from when + /// // were were *supposed* to tick + /// interval.tick().await; + /// # } + /// ``` + /// + /// [`Burst`]: MissedTickBehavior::Burst + /// [`Skip`]: MissedTickBehavior::Skip + /// [`tick`]: Interval::tick + Delay, + + /// Skip missed ticks and tick on the next multiple of `period` from + /// `start`. + /// + /// When this strategy is used, [`Interval`] schedules the next tick to fire + /// at the next-closest tick that is a multiple of `period` away from + /// `start` (the point where [`Interval`] first ticked). Like [`Burst`], all + /// ticks remain multiples of `period` away from `start`, but unlike + /// [`Burst`], the ticks may not be *one* multiple of `period` away from the + /// last tick. Like [`Delay`], the ticks are no longer the same as they + /// would have been if ticks had not been missed, but unlike [`Delay`], and + /// like [`Burst`], the ticks may be shortened to be less than one `period` + /// away from each other. + /// + /// This looks something like this: + /// ```text + /// Expected ticks: | 1 | 2 | 3 | 4 | 5 | 6 | + /// Actual ticks: | work -----| delay | work ---| work -----| work -----| + /// ``` + /// + /// In code: + /// + /// ``` + /// use tokio::time::{interval, Duration, MissedTickBehavior}; + /// # async fn task_that_takes_75_millis() {} + /// + /// # #[tokio::main(flavor = "current_thread")] + /// # async fn main() { + /// let mut interval = interval(Duration::from_millis(50)); + /// interval.set_missed_tick_behavior(MissedTickBehavior::Skip); + /// + /// task_that_takes_75_millis().await; + /// // The `Interval` has missed a tick + /// + /// // Since we have exceeded our timeout, this will resolve immediately + /// interval.tick().await; + /// + /// // This one will resolve after 25ms, 100ms after the start of + /// // `interval`, which is the closest multiple of `period` from the start + /// // of `interval` after the call to `tick` up above. + /// interval.tick().await; + /// # } + /// ``` + /// + /// [`Burst`]: MissedTickBehavior::Burst + /// [`Delay`]: MissedTickBehavior::Delay + Skip, +} + +impl MissedTickBehavior { + /// If a tick is missed, this method is called to determine when the next tick should happen. + fn next_timeout(&self, timeout: Instant, now: Instant, period: Duration) -> Instant { + match self { + Self::Burst => timeout + period, + Self::Delay => now + period, + Self::Skip => { + now + period + - Duration::from_nanos( + ((now - timeout).as_nanos() % period.as_nanos()) + .try_into() + // This operation is practically guaranteed not to + // fail, as in order for it to fail, `period` would + // have to be longer than `now - timeout`, and both + // would have to be longer than 584 years. + // + // If it did fail, there's not a good way to pass + // the error along to the user, so we just panic. + .expect( + "too much time has elapsed since the interval was supposed to tick", + ), + ) + } + } + } +} + +impl Default for MissedTickBehavior { + /// Returns [`MissedTickBehavior::Burst`]. + /// + /// For most usecases, the [`Burst`] strategy is what is desired. + /// Additionally, to preserve backwards compatibility, the [`Burst`] + /// strategy must be the default. For these reasons, + /// [`MissedTickBehavior::Burst`] is the default for [`MissedTickBehavior`]. + /// See [`Burst`] for more details. + /// + /// [`Burst`]: MissedTickBehavior::Burst + fn default() -> Self { + Self::Burst + } +} + +/// Interval returned by [`interval`] and [`interval_at`] +/// +/// This type allows you to wait on a sequence of instants with a certain +/// duration between each instant. Unlike calling [`sleep`] in a loop, this lets +/// you count the time spent between the calls to [`sleep`] as well. +/// +/// An `Interval` can be turned into a `Stream` with [`IntervalStream`]. +/// +/// [`IntervalStream`]: https://docs.rs/tokio-stream/latest/tokio_stream/wrappers/struct.IntervalStream.html +/// [`sleep`]: crate::time::sleep +#[derive(Debug)] +pub struct Interval { + /// Future that completes the next time the `Interval` yields a value. + delay: Pin<Box<Sleep>>, + + /// The duration between values yielded by `Interval`. + period: Duration, + + /// The strategy `Interval` should use when a tick is missed. + missed_tick_behavior: MissedTickBehavior, +} + +impl Interval { + /// Completes when the next instant in the interval has been reached. + /// + /// # Examples + /// + /// ``` + /// use tokio::time; + /// + /// use std::time::Duration; + /// + /// #[tokio::main] + /// async fn main() { + /// let mut interval = time::interval(Duration::from_millis(10)); + /// + /// interval.tick().await; + /// interval.tick().await; + /// interval.tick().await; + /// + /// // approximately 20ms have elapsed. + /// } + /// ``` + pub async fn tick(&mut self) -> Instant { + poll_fn(|cx| self.poll_tick(cx)).await + } + + /// Poll for the next instant in the interval to be reached. + /// + /// This method can return the following values: + /// + /// * `Poll::Pending` if the next instant has not yet been reached. + /// * `Poll::Ready(instant)` if the next instant has been reached. + /// + /// When this method returns `Poll::Pending`, the current task is scheduled + /// to receive a wakeup when the instant has elapsed. Note that on multiple + /// calls to `poll_tick`, only the [`Waker`](std::task::Waker) from the + /// [`Context`] passed to the most recent call is scheduled to receive a + /// wakeup. + pub fn poll_tick(&mut self, cx: &mut Context<'_>) -> Poll<Instant> { + // Wait for the delay to be done + ready!(Pin::new(&mut self.delay).poll(cx)); + + // Get the time when we were scheduled to tick + let timeout = self.delay.deadline(); + + let now = Instant::now(); + + // If a tick was not missed, and thus we are being called before the + // next tick is due, just schedule the next tick normally, one `period` + // after `timeout` + // + // However, if a tick took excessively long and we are now behind, + // schedule the next tick according to how the user specified with + // `MissedTickBehavior` + let next = if now > timeout + Duration::from_millis(5) { + self.missed_tick_behavior + .next_timeout(timeout, now, self.period) + } else { + timeout + self.period + }; + + self.delay.as_mut().reset(next); + + // Return the time when we were scheduled to tick + Poll::Ready(timeout) + } + + /// Returns the [`MissedTickBehavior`] strategy currently being used. + pub fn missed_tick_behavior(&self) -> MissedTickBehavior { + self.missed_tick_behavior + } + + /// Sets the [`MissedTickBehavior`] strategy that should be used. + pub fn set_missed_tick_behavior(&mut self, behavior: MissedTickBehavior) { + self.missed_tick_behavior = behavior; + } + + /// Returns the period of the interval. + pub fn period(&self) -> Duration { + self.period + } +} |