diff options
Diffstat (limited to 'vendor/zerovec/src/ule/mod.rs')
-rw-r--r-- | vendor/zerovec/src/ule/mod.rs | 388 |
1 files changed, 388 insertions, 0 deletions
diff --git a/vendor/zerovec/src/ule/mod.rs b/vendor/zerovec/src/ule/mod.rs new file mode 100644 index 000000000..29c7d0ecd --- /dev/null +++ b/vendor/zerovec/src/ule/mod.rs @@ -0,0 +1,388 @@ +// This file is part of ICU4X. For terms of use, please see the file +// called LICENSE at the top level of the ICU4X source tree +// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ). + +#![allow(clippy::upper_case_acronyms)] + +//! Traits over unaligned little-endian data (ULE, pronounced "yule"). +//! +//! The main traits for this module are [`ULE`], [`AsULE`] and, [`VarULE`]. +//! +//! See [the design doc](https://github.com/unicode-org/icu4x/blob/main/utils/zerovec/design_doc.md) for details on how these traits +//! works under the hood. +mod chars; +#[cfg(doc)] +pub mod custom; +mod encode; +mod multi; +mod niche; +mod option; +mod plain; +mod slices; +mod unvalidated; + +pub mod tuple; +pub use super::ZeroVecError; +pub use chars::CharULE; +pub use encode::{encode_varule_to_box, EncodeAsVarULE}; +pub use multi::MultiFieldsULE; +pub use niche::{NicheBytes, NichedOption, NichedOptionULE}; +pub use option::{OptionULE, OptionVarULE}; +pub use plain::RawBytesULE; +pub use unvalidated::UnvalidatedStr; + +use alloc::alloc::Layout; +use alloc::borrow::ToOwned; +use alloc::boxed::Box; +use core::{mem, slice}; + +/// Fixed-width, byte-aligned data that can be cast to and from a little-endian byte slice. +/// +/// If you need to implement this trait, consider using [`#[make_ule]`](crate::make_ule) or +/// [`#[derive(ULE)]`](macro@ULE) instead. +/// +/// Types that are not fixed-width can implement [`VarULE`] instead. +/// +/// "ULE" stands for "Unaligned little-endian" +/// +/// # Safety +/// +/// Safety checklist for `ULE`: +/// +/// 1. The type *must not* include any uninitialized or padding bytes. +/// 2. The type must have an alignment of 1 byte. +/// 3. The impl of [`ULE::validate_byte_slice()`] *must* return an error if the given byte slice +/// would not represent a valid slice of this type. +/// 4. The impl of [`ULE::validate_byte_slice()`] *must* return an error if the given byte slice +/// cannot be used in its entirety (if its length is not a multiple of `size_of::<Self>()`). +/// 5. All other methods *must* be left with their default impl, or else implemented according to +/// their respective safety guidelines. +/// 6. Acknowledge the following note about the equality invariant. +/// +/// If the ULE type is a struct only containing other ULE types (or other types which satisfy invariants 1 and 2, +/// like `[u8; N]`), invariants 1 and 2 can be achieved via `#[repr(packed)]` or `#[repr(transparent)]`. +/// +/// # Equality invariant +/// +/// A non-safety invariant is that if `Self` implements `PartialEq`, the it *must* be logically +/// equivalent to byte equality on [`Self::as_byte_slice()`]. +/// +/// It may be necessary to introduce a "canonical form" of the ULE if logical equality does not +/// equal byte equality. In such a case, [`Self::validate_byte_slice()`] should return an error +/// for any values that are not in canonical form. For example, the decimal strings "1.23e4" and +/// "12.3e3" are logically equal, but not byte-for-byte equal, so we could define a canonical form +/// where only a single digit is allowed before `.`. +/// +/// Failure to follow this invariant will cause surprising behavior in `PartialEq`, which may +/// result in unpredictable operations on `ZeroVec`, `VarZeroVec`, and `ZeroMap`. +pub unsafe trait ULE +where + Self: Sized, + Self: Copy + 'static, +{ + /// Validates a byte slice, `&[u8]`. + /// + /// If `Self` is not well-defined for all possible bit values, the bytes should be validated. + /// If the bytes can be transmuted, *in their entirety*, to a valid slice of `Self`, then `Ok` + /// should be returned; otherwise, `Self::Error` should be returned. + fn validate_byte_slice(bytes: &[u8]) -> Result<(), ZeroVecError>; + + /// Parses a byte slice, `&[u8]`, and return it as `&[Self]` with the same lifetime. + /// + /// If `Self` is not well-defined for all possible bit values, the bytes should be validated, + /// and an error should be returned in the same cases as [`Self::validate_byte_slice()`]. + /// + /// The default implementation executes [`Self::validate_byte_slice()`] followed by + /// [`Self::from_byte_slice_unchecked`]. + /// + /// Note: The following equality should hold: `bytes.len() % size_of::<Self>() == 0`. This + /// means that the returned slice can span the entire byte slice. + fn parse_byte_slice(bytes: &[u8]) -> Result<&[Self], ZeroVecError> { + Self::validate_byte_slice(bytes)?; + debug_assert_eq!(bytes.len() % mem::size_of::<Self>(), 0); + Ok(unsafe { Self::from_byte_slice_unchecked(bytes) }) + } + + /// Takes a byte slice, `&[u8]`, and return it as `&[Self]` with the same lifetime, assuming + /// that this byte slice has previously been run through [`Self::parse_byte_slice()`] with + /// success. + /// + /// The default implementation performs a pointer cast to the same region of memory. + /// + /// # Safety + /// + /// ## Callers + /// + /// Callers of this method must take care to ensure that `bytes` was previously passed through + /// [`Self::validate_byte_slice()`] with success (and was not changed since then). + /// + /// ## Implementors + /// + /// Implementations of this method may call unsafe functions to cast the pointer to the correct + /// type, assuming the "Callers" invariant above. + /// + /// Keep in mind that `&[Self]` and `&[u8]` may have different lengths. + /// + /// Safety checklist: + /// + /// 1. This method *must* return the same result as [`Self::parse_byte_slice()`]. + /// 2. This method *must* return a slice to the same region of memory as the argument. + #[inline] + unsafe fn from_byte_slice_unchecked(bytes: &[u8]) -> &[Self] { + let data = bytes.as_ptr(); + let len = bytes.len() / mem::size_of::<Self>(); + debug_assert_eq!(bytes.len() % mem::size_of::<Self>(), 0); + core::slice::from_raw_parts(data as *const Self, len) + } + + /// Given `&[Self]`, returns a `&[u8]` with the same lifetime. + /// + /// The default implementation performs a pointer cast to the same region of memory. + /// + /// # Safety + /// + /// Implementations of this method should call potentially unsafe functions to cast the + /// pointer to the correct type. + /// + /// Keep in mind that `&[Self]` and `&[u8]` may have different lengths. + #[inline] + #[allow(clippy::wrong_self_convention)] // https://github.com/rust-lang/rust-clippy/issues/7219 + fn as_byte_slice(slice: &[Self]) -> &[u8] { + unsafe { + slice::from_raw_parts(slice as *const [Self] as *const u8, mem::size_of_val(slice)) + } + } +} + +/// A trait for any type that has a 1:1 mapping with an unaligned little-endian (ULE) type. +/// +/// If you need to implement this trait, consider using [`#[make_varule]`](crate::make_ule) instead. +pub trait AsULE: Copy { + /// The ULE type corresponding to `Self`. + /// + /// Types having infallible conversions from all bit values (Plain Old Data) can use + /// `RawBytesULE` with the desired width; for example, `u32` uses `RawBytesULE<4>`. + /// + /// Types that are not well-defined for all bit values should implement a custom ULE. + type ULE: ULE; + + /// Converts from `Self` to `Self::ULE`. + /// + /// This function may involve byte order swapping (native-endian to little-endian). + /// + /// For best performance, mark your implementation of this function `#[inline]`. + fn to_unaligned(self) -> Self::ULE; + + /// Converts from `Self::ULE` to `Self`. + /// + /// This function may involve byte order swapping (little-endian to native-endian). + /// + /// For best performance, mark your implementation of this function `#[inline]`. + /// + /// # Safety + /// + /// This function is infallible because bit validation should have occurred when `Self::ULE` + /// was first constructed. An implementation may therefore involve an `unsafe{}` block, like + /// `from_bytes_unchecked()`. + fn from_unaligned(unaligned: Self::ULE) -> Self; +} + +/// An [`EqULE`] type is one whose byte sequence equals the byte sequence of its ULE type on +/// little-endian platforms. This enables certain performance optimizations, such as +/// [`ZeroVec::try_from_slice`](crate::ZeroVec::try_from_slice). +/// +/// # Implementation safety +/// +/// This trait is safe to implement if the type's ULE (as defined by `impl `[`AsULE`]` for T`) +/// has an equal byte sequence as the type itself on little-endian platforms; i.e., one where +/// `*const T` can be cast to a valid `*const T::ULE`. +pub unsafe trait EqULE: AsULE {} + +/// A trait for a type where aligned slices can be cast to unaligned slices. +/// +/// Auto-implemented on all types implementing [`EqULE`]. +pub trait SliceAsULE +where + Self: AsULE + Sized, +{ + /// Converts from `&[Self]` to `&[Self::ULE]` if possible. + /// + /// In general, this function returns `Some` on little-endian and `None` on big-endian. + fn slice_to_unaligned(slice: &[Self]) -> Option<&[Self::ULE]>; +} + +#[cfg(target_endian = "little")] +impl<T> SliceAsULE for T +where + T: EqULE, +{ + #[inline] + fn slice_to_unaligned(slice: &[Self]) -> Option<&[Self::ULE]> { + // This is safe because on little-endian platforms, the byte sequence of &[T] + // is equivalent to the byte sequence of &[T::ULE] by the contract of EqULE, + // and &[T::ULE] has equal or looser alignment than &[T]. + let ule_slice = + unsafe { core::slice::from_raw_parts(slice.as_ptr() as *const Self::ULE, slice.len()) }; + Some(ule_slice) + } +} + +#[cfg(not(target_endian = "little"))] +impl<T> SliceAsULE for T +where + T: EqULE, +{ + #[inline] + fn slice_to_unaligned(_: &[Self]) -> Option<&[Self::ULE]> { + None + } +} + +/// Variable-width, byte-aligned data that can be cast to and from a little-endian byte slice. +/// +/// If you need to implement this trait, consider using [`#[make_varule]`](crate::make_varule) or +/// [`#[derive(VarULE)]`](macro@VarULE) instead. +/// +/// This trait is mostly for unsized types like `str` and `[T]`. It can be implemented on sized types; +/// however, it is much more preferable to use [`ULE`] for that purpose. The [`custom`] module contains +/// additional documentation on how this type can be implemented on custom types. +/// +/// If deserialization with `VarZeroVec` is desired is recommended to implement `Deserialize` for +/// `Box<T>` (serde does not do this automatically for unsized `T`). +/// +/// For convenience it is typically desired to implement [`EncodeAsVarULE`] and [`ZeroFrom`](zerofrom::ZeroFrom) +/// on some stack type to convert to and from the ULE type efficiently when necessary. +/// +/// # Safety +/// +/// Safety checklist for `VarULE`: +/// +/// 1. The type *must not* include any uninitialized or padding bytes. +/// 2. The type must have an alignment of 1 byte. +/// 3. The impl of [`VarULE::validate_byte_slice()`] *must* return an error if the given byte slice +/// would not represent a valid slice of this type. +/// 4. The impl of [`VarULE::validate_byte_slice()`] *must* return an error if the given byte slice +/// cannot be used in its entirety. +/// 5. The impl of [`VarULE::from_byte_slice_unchecked()`] must produce a reference to the same +/// underlying data assuming that the given bytes previously passed validation. +/// 6. All other methods *must* be left with their default impl, or else implemented according to +/// their respective safety guidelines. +/// 7. Acknowledge the following note about the equality invariant. +/// +/// If the ULE type is a struct only containing other ULE/VarULE types (or other types which satisfy invariants 1 and 2, +/// like `[u8; N]`), invariants 1 and 2 can be achieved via `#[repr(packed)]` or `#[repr(transparent)]`. +/// +/// # Equality invariant +/// +/// A non-safety invariant is that if `Self` implements `PartialEq`, the it *must* be logically +/// equivalent to byte equality on [`Self::as_byte_slice()`]. +/// +/// It may be necessary to introduce a "canonical form" of the ULE if logical equality does not +/// equal byte equality. In such a case, [`Self::validate_byte_slice()`] should return an error +/// for any values that are not in canonical form. For example, the decimal strings "1.23e4" and +/// "12.3e3" are logically equal, but not byte-for-byte equal, so we could define a canonical form +/// where only a single digit is allowed before `.`. +/// +/// Failure to follow this invariant will cause surprising behavior in `PartialEq`, which may +/// result in unpredictable operations on `ZeroVec`, `VarZeroVec`, and `ZeroMap`. +pub unsafe trait VarULE: 'static { + /// Validates a byte slice, `&[u8]`. + /// + /// If `Self` is not well-defined for all possible bit values, the bytes should be validated. + /// If the bytes can be transmuted, *in their entirety*, to a valid `&Self`, then `Ok` should + /// be returned; otherwise, `Self::Error` should be returned. + fn validate_byte_slice(_bytes: &[u8]) -> Result<(), ZeroVecError>; + + /// Parses a byte slice, `&[u8]`, and return it as `&Self` with the same lifetime. + /// + /// If `Self` is not well-defined for all possible bit values, the bytes should be validated, + /// and an error should be returned in the same cases as [`Self::validate_byte_slice()`]. + /// + /// The default implementation executes [`Self::validate_byte_slice()`] followed by + /// [`Self::from_byte_slice_unchecked`]. + /// + /// Note: The following equality should hold: `size_of_val(result) == size_of_val(bytes)`, + /// where `result` is the successful return value of the method. This means that the return + /// value spans the entire byte slice. + fn parse_byte_slice(bytes: &[u8]) -> Result<&Self, ZeroVecError> { + Self::validate_byte_slice(bytes)?; + let result = unsafe { Self::from_byte_slice_unchecked(bytes) }; + debug_assert_eq!(mem::size_of_val(result), mem::size_of_val(bytes)); + Ok(result) + } + + /// Takes a byte slice, `&[u8]`, and return it as `&Self` with the same lifetime, assuming + /// that this byte slice has previously been run through [`Self::parse_byte_slice()`] with + /// success. + /// + /// # Safety + /// + /// ## Callers + /// + /// Callers of this method must take care to ensure that `bytes` was previously passed through + /// [`Self::validate_byte_slice()`] with success (and was not changed since then). + /// + /// ## Implementors + /// + /// Implementations of this method may call unsafe functions to cast the pointer to the correct + /// type, assuming the "Callers" invariant above. + /// + /// Safety checklist: + /// + /// 1. This method *must* return the same result as [`Self::parse_byte_slice()`]. + /// 2. This method *must* return a slice to the same region of memory as the argument. + unsafe fn from_byte_slice_unchecked(bytes: &[u8]) -> &Self; + + /// Given `&Self`, returns a `&[u8]` with the same lifetime. + /// + /// The default implementation performs a pointer cast to the same region of memory. + /// + /// # Safety + /// + /// Implementations of this method should call potentially unsafe functions to cast the + /// pointer to the correct type. + #[inline] + fn as_byte_slice(&self) -> &[u8] { + unsafe { slice::from_raw_parts(self as *const Self as *const u8, mem::size_of_val(self)) } + } + + /// Allocate on the heap as a `Box<T>` + #[inline] + fn to_boxed(&self) -> Box<Self> { + let bytesvec = self.as_byte_slice().to_owned().into_boxed_slice(); + unsafe { + // Get the pointer representation + let ptr: *mut Self = + Self::from_byte_slice_unchecked(&bytesvec) as *const Self as *mut Self; + assert_eq!(Layout::for_value(&*ptr), Layout::for_value(&*bytesvec)); + // Forget the allocation + mem::forget(bytesvec); + // Transmute the pointer to an owned pointer + Box::from_raw(ptr) + } + } +} + +// Proc macro reexports +// +// These exist so that our docs can use intra-doc links. +// Due to quirks of how rustdoc does documentation on reexports, these must be in this module and not reexported from +// a submodule + +/// Custom derive for [`ULE`]. +/// +/// This can be attached to [`Copy`] structs containing only [`ULE`] types. +/// +/// Most of the time, it is recommended one use [`#[make_ule]`](crate::make_ule) instead of defining +/// a custom ULE type. +#[cfg(feature = "derive")] +pub use zerovec_derive::ULE; + +/// Custom derive for [`VarULE`] +/// +/// This can be attached to structs containing only [`ULE`] types with one [`VarULE`] type at the end. +/// +/// Most of the time, it is recommended one use [`#[make_varule]`](crate::make_varule) instead of defining +/// a custom [`VarULE`] type. +#[cfg(feature = "derive")] +pub use zerovec_derive::VarULE; |