summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_borrowck/src/region_infer/opaque_types.rs
blob: d6712b6a4799c9cc1fbe6e885b7e86461f89c3b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::vec_map::VecMap;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::OpaqueTyOrigin;
use rustc_infer::infer::error_reporting::unexpected_hidden_region_diagnostic;
use rustc_infer::infer::TyCtxtInferExt as _;
use rustc_infer::infer::{DefiningAnchor, InferCtxt};
use rustc_infer::traits::{Obligation, ObligationCause, TraitEngine};
use rustc_middle::ty::fold::{TypeFolder, TypeSuperFoldable};
use rustc_middle::ty::subst::{GenericArg, GenericArgKind, InternalSubsts};
use rustc_middle::ty::visit::TypeVisitable;
use rustc_middle::ty::{
    self, OpaqueHiddenType, OpaqueTypeKey, ToPredicate, Ty, TyCtxt, TypeFoldable,
};
use rustc_span::Span;
use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
use rustc_trait_selection::traits::TraitEngineExt as _;

use super::RegionInferenceContext;

impl<'tcx> RegionInferenceContext<'tcx> {
    /// Resolve any opaque types that were encountered while borrow checking
    /// this item. This is then used to get the type in the `type_of` query.
    ///
    /// For example consider `fn f<'a>(x: &'a i32) -> impl Sized + 'a { x }`.
    /// This is lowered to give HIR something like
    ///
    /// type f<'a>::_Return<'_a> = impl Sized + '_a;
    /// fn f<'a>(x: &'a i32) -> f<'static>::_Return<'a> { x }
    ///
    /// When checking the return type record the type from the return and the
    /// type used in the return value. In this case they might be `_Return<'1>`
    /// and `&'2 i32` respectively.
    ///
    /// Once we to this method, we have completed region inference and want to
    /// call `infer_opaque_definition_from_instantiation` to get the inferred
    /// type of `_Return<'_a>`. `infer_opaque_definition_from_instantiation`
    /// compares lifetimes directly, so we need to map the inference variables
    /// back to concrete lifetimes: `'static`, `ReEarlyBound` or `ReFree`.
    ///
    /// First we map all the lifetimes in the concrete type to an equal
    /// universal region that occurs in the concrete type's substs, in this case
    /// this would result in `&'1 i32`. We only consider regions in the substs
    /// in case there is an equal region that does not. For example, this should
    /// be allowed:
    /// `fn f<'a: 'b, 'b: 'a>(x: *mut &'b i32) -> impl Sized + 'a { x }`
    ///
    /// Then we map the regions in both the type and the subst to their
    /// `external_name` giving `concrete_type = &'a i32`,
    /// `substs = ['static, 'a]`. This will then allow
    /// `infer_opaque_definition_from_instantiation` to determine that
    /// `_Return<'_a> = &'_a i32`.
    ///
    /// There's a slight complication around closures. Given
    /// `fn f<'a: 'a>() { || {} }` the closure's type is something like
    /// `f::<'a>::{{closure}}`. The region parameter from f is essentially
    /// ignored by type checking so ends up being inferred to an empty region.
    /// Calling `universal_upper_bound` for such a region gives `fr_fn_body`,
    /// which has no `external_name` in which case we use `'empty` as the
    /// region to pass to `infer_opaque_definition_from_instantiation`.
    #[instrument(level = "debug", skip(self, infcx))]
    pub(crate) fn infer_opaque_types(
        &self,
        infcx: &InferCtxt<'_, 'tcx>,
        opaque_ty_decls: VecMap<OpaqueTypeKey<'tcx>, (OpaqueHiddenType<'tcx>, OpaqueTyOrigin)>,
    ) -> VecMap<LocalDefId, OpaqueHiddenType<'tcx>> {
        let mut result: VecMap<LocalDefId, OpaqueHiddenType<'tcx>> = VecMap::new();
        for (opaque_type_key, (concrete_type, origin)) in opaque_ty_decls {
            let substs = opaque_type_key.substs;
            debug!(?concrete_type, ?substs);

            let mut subst_regions = vec![self.universal_regions.fr_static];
            let universal_substs = infcx.tcx.fold_regions(substs, |region, _| {
                if let ty::RePlaceholder(..) = region.kind() {
                    // Higher kinded regions don't need remapping, they don't refer to anything outside of this the substs.
                    return region;
                }
                let vid = self.to_region_vid(region);
                trace!(?vid);
                let scc = self.constraint_sccs.scc(vid);
                trace!(?scc);
                match self.scc_values.universal_regions_outlived_by(scc).find_map(|lb| {
                    self.eval_equal(vid, lb).then_some(self.definitions[lb].external_name?)
                }) {
                    Some(region) => {
                        let vid = self.universal_regions.to_region_vid(region);
                        subst_regions.push(vid);
                        region
                    }
                    None => {
                        subst_regions.push(vid);
                        infcx.tcx.sess.delay_span_bug(
                            concrete_type.span,
                            "opaque type with non-universal region substs",
                        );
                        infcx.tcx.lifetimes.re_static
                    }
                }
            });

            subst_regions.sort();
            subst_regions.dedup();

            let universal_concrete_type =
                infcx.tcx.fold_regions(concrete_type, |region, _| match *region {
                    ty::ReVar(vid) => subst_regions
                        .iter()
                        .find(|ur_vid| self.eval_equal(vid, **ur_vid))
                        .and_then(|ur_vid| self.definitions[*ur_vid].external_name)
                        .unwrap_or(infcx.tcx.lifetimes.re_root_empty),
                    _ => region,
                });

            debug!(?universal_concrete_type, ?universal_substs);

            let opaque_type_key =
                OpaqueTypeKey { def_id: opaque_type_key.def_id, substs: universal_substs };
            let ty = infcx.infer_opaque_definition_from_instantiation(
                opaque_type_key,
                universal_concrete_type,
                origin,
            );
            // Sometimes two opaque types are the same only after we remap the generic parameters
            // back to the opaque type definition. E.g. we may have `OpaqueType<X, Y>` mapped to `(X, Y)`
            // and `OpaqueType<Y, X>` mapped to `(Y, X)`, and those are the same, but we only know that
            // once we convert the generic parameters to those of the opaque type.
            if let Some(prev) = result.get_mut(&opaque_type_key.def_id) {
                if prev.ty != ty {
                    if !ty.references_error() {
                        prev.report_mismatch(
                            &OpaqueHiddenType { ty, span: concrete_type.span },
                            infcx.tcx,
                        );
                    }
                    prev.ty = infcx.tcx.ty_error();
                }
                // Pick a better span if there is one.
                // FIXME(oli-obk): collect multiple spans for better diagnostics down the road.
                prev.span = prev.span.substitute_dummy(concrete_type.span);
            } else {
                result.insert(
                    opaque_type_key.def_id,
                    OpaqueHiddenType { ty, span: concrete_type.span },
                );
            }
        }
        result
    }

    /// Map the regions in the type to named regions. This is similar to what
    /// `infer_opaque_types` does, but can infer any universal region, not only
    /// ones from the substs for the opaque type. It also doesn't double check
    /// that the regions produced are in fact equal to the named region they are
    /// replaced with. This is fine because this function is only to improve the
    /// region names in error messages.
    pub(crate) fn name_regions<T>(&self, tcx: TyCtxt<'tcx>, ty: T) -> T
    where
        T: TypeFoldable<'tcx>,
    {
        tcx.fold_regions(ty, |region, _| match *region {
            ty::ReVar(vid) => {
                // Find something that we can name
                let upper_bound = self.approx_universal_upper_bound(vid);
                let upper_bound = &self.definitions[upper_bound];
                match upper_bound.external_name {
                    Some(reg) => reg,
                    None => {
                        // Nothing exact found, so we pick the first one that we find.
                        let scc = self.constraint_sccs.scc(vid);
                        for vid in self.rev_scc_graph.as_ref().unwrap().upper_bounds(scc) {
                            match self.definitions[vid].external_name {
                                None => {}
                                Some(region) if region.is_static() => {}
                                Some(region) => return region,
                            }
                        }
                        region
                    }
                }
            }
            _ => region,
        })
    }
}

pub trait InferCtxtExt<'tcx> {
    fn infer_opaque_definition_from_instantiation(
        &self,
        opaque_type_key: OpaqueTypeKey<'tcx>,
        instantiated_ty: OpaqueHiddenType<'tcx>,
        origin: OpaqueTyOrigin,
    ) -> Ty<'tcx>;
}

impl<'a, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'a, 'tcx> {
    /// Given the fully resolved, instantiated type for an opaque
    /// type, i.e., the value of an inference variable like C1 or C2
    /// (*), computes the "definition type" for an opaque type
    /// definition -- that is, the inferred value of `Foo1<'x>` or
    /// `Foo2<'x>` that we would conceptually use in its definition:
    /// ```ignore (illustrative)
    /// type Foo1<'x> = impl Bar<'x> = AAA;  // <-- this type AAA
    /// type Foo2<'x> = impl Bar<'x> = BBB;  // <-- or this type BBB
    /// fn foo<'a, 'b>(..) -> (Foo1<'a>, Foo2<'b>) { .. }
    /// ```
    /// Note that these values are defined in terms of a distinct set of
    /// generic parameters (`'x` instead of `'a`) from C1 or C2. The main
    /// purpose of this function is to do that translation.
    ///
    /// (*) C1 and C2 were introduced in the comments on
    /// `register_member_constraints`. Read that comment for more context.
    ///
    /// # Parameters
    ///
    /// - `def_id`, the `impl Trait` type
    /// - `substs`, the substs  used to instantiate this opaque type
    /// - `instantiated_ty`, the inferred type C1 -- fully resolved, lifted version of
    ///   `opaque_defn.concrete_ty`
    #[instrument(level = "debug", skip(self))]
    fn infer_opaque_definition_from_instantiation(
        &self,
        opaque_type_key: OpaqueTypeKey<'tcx>,
        instantiated_ty: OpaqueHiddenType<'tcx>,
        origin: OpaqueTyOrigin,
    ) -> Ty<'tcx> {
        if self.is_tainted_by_errors() {
            return self.tcx.ty_error();
        }

        let OpaqueTypeKey { def_id, substs } = opaque_type_key;

        // Use substs to build up a reverse map from regions to their
        // identity mappings. This is necessary because of `impl
        // Trait` lifetimes are computed by replacing existing
        // lifetimes with 'static and remapping only those used in the
        // `impl Trait` return type, resulting in the parameters
        // shifting.
        let id_substs = InternalSubsts::identity_for_item(self.tcx, def_id.to_def_id());
        debug!(?id_substs);
        let map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>> =
            substs.iter().enumerate().map(|(index, subst)| (subst, id_substs[index])).collect();
        debug!("map = {:#?}", map);

        // Convert the type from the function into a type valid outside
        // the function, by replacing invalid regions with 'static,
        // after producing an error for each of them.
        let definition_ty = instantiated_ty.ty.fold_with(&mut ReverseMapper::new(
            self.tcx,
            opaque_type_key,
            map,
            instantiated_ty.ty,
            instantiated_ty.span,
        ));
        debug!(?definition_ty);

        if !check_opaque_type_parameter_valid(
            self.tcx,
            opaque_type_key,
            origin,
            instantiated_ty.span,
        ) {
            return self.tcx.ty_error();
        }

        // Only check this for TAIT. RPIT already supports `src/test/ui/impl-trait/nested-return-type2.rs`
        // on stable and we'd break that.
        if let OpaqueTyOrigin::TyAlias = origin {
            // This logic duplicates most of `check_opaque_meets_bounds`.
            // FIXME(oli-obk): Also do region checks here and then consider removing `check_opaque_meets_bounds` entirely.
            let param_env = self.tcx.param_env(def_id);
            let body_id = self.tcx.local_def_id_to_hir_id(def_id);
            // HACK This bubble is required for this tests to pass:
            // type-alias-impl-trait/issue-67844-nested-opaque.rs
            self.tcx.infer_ctxt().with_opaque_type_inference(DefiningAnchor::Bubble).enter(
                move |infcx| {
                    // Require the hidden type to be well-formed with only the generics of the opaque type.
                    // Defining use functions may have more bounds than the opaque type, which is ok, as long as the
                    // hidden type is well formed even without those bounds.
                    let predicate =
                        ty::Binder::dummy(ty::PredicateKind::WellFormed(definition_ty.into()))
                            .to_predicate(infcx.tcx);
                    let mut fulfillment_cx = <dyn TraitEngine<'tcx>>::new(infcx.tcx);

                    // Require that the hidden type actually fulfills all the bounds of the opaque type, even without
                    // the bounds that the function supplies.
                    match infcx.register_hidden_type(
                        OpaqueTypeKey { def_id, substs: id_substs },
                        ObligationCause::misc(instantiated_ty.span, body_id),
                        param_env,
                        definition_ty,
                        origin,
                    ) {
                        Ok(infer_ok) => {
                            for obligation in infer_ok.obligations {
                                fulfillment_cx.register_predicate_obligation(&infcx, obligation);
                            }
                        }
                        Err(err) => {
                            infcx
                                .report_mismatched_types(
                                    &ObligationCause::misc(instantiated_ty.span, body_id),
                                    self.tcx.mk_opaque(def_id.to_def_id(), id_substs),
                                    definition_ty,
                                    err,
                                )
                                .emit();
                        }
                    }

                    fulfillment_cx.register_predicate_obligation(
                        &infcx,
                        Obligation::misc(instantiated_ty.span, body_id, param_env, predicate),
                    );

                    // Check that all obligations are satisfied by the implementation's
                    // version.
                    let errors = fulfillment_cx.select_all_or_error(&infcx);

                    // This is still required for many(half of the tests in ui/type-alias-impl-trait)
                    // tests to pass
                    let _ = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();

                    if errors.is_empty() {
                        definition_ty
                    } else {
                        infcx.report_fulfillment_errors(&errors, None, false);
                        self.tcx.ty_error()
                    }
                },
            )
        } else {
            definition_ty
        }
    }
}

fn check_opaque_type_parameter_valid(
    tcx: TyCtxt<'_>,
    opaque_type_key: OpaqueTypeKey<'_>,
    origin: OpaqueTyOrigin,
    span: Span,
) -> bool {
    match origin {
        // No need to check return position impl trait (RPIT)
        // because for type and const parameters they are correct
        // by construction: we convert
        //
        // fn foo<P0..Pn>() -> impl Trait
        //
        // into
        //
        // type Foo<P0...Pn>
        // fn foo<P0..Pn>() -> Foo<P0...Pn>.
        //
        // For lifetime parameters we convert
        //
        // fn foo<'l0..'ln>() -> impl Trait<'l0..'lm>
        //
        // into
        //
        // type foo::<'p0..'pn>::Foo<'q0..'qm>
        // fn foo<l0..'ln>() -> foo::<'static..'static>::Foo<'l0..'lm>.
        //
        // which would error here on all of the `'static` args.
        OpaqueTyOrigin::FnReturn(..) | OpaqueTyOrigin::AsyncFn(..) => return true,
        // Check these
        OpaqueTyOrigin::TyAlias => {}
    }
    let opaque_generics = tcx.generics_of(opaque_type_key.def_id);
    let mut seen_params: FxHashMap<_, Vec<_>> = FxHashMap::default();
    for (i, arg) in opaque_type_key.substs.iter().enumerate() {
        let arg_is_param = match arg.unpack() {
            GenericArgKind::Type(ty) => matches!(ty.kind(), ty::Param(_)),
            GenericArgKind::Lifetime(lt) if lt.is_static() => {
                tcx.sess
                    .struct_span_err(span, "non-defining opaque type use in defining scope")
                    .span_label(
                        tcx.def_span(opaque_generics.param_at(i, tcx).def_id),
                        "cannot use static lifetime; use a bound lifetime \
                                    instead or remove the lifetime parameter from the \
                                    opaque type",
                    )
                    .emit();
                return false;
            }
            GenericArgKind::Lifetime(lt) => {
                matches!(*lt, ty::ReEarlyBound(_) | ty::ReFree(_))
            }
            GenericArgKind::Const(ct) => matches!(ct.kind(), ty::ConstKind::Param(_)),
        };

        if arg_is_param {
            seen_params.entry(arg).or_default().push(i);
        } else {
            // Prevent `fn foo() -> Foo<u32>` from being defining.
            let opaque_param = opaque_generics.param_at(i, tcx);
            tcx.sess
                .struct_span_err(span, "non-defining opaque type use in defining scope")
                .span_note(
                    tcx.def_span(opaque_param.def_id),
                    &format!(
                        "used non-generic {} `{}` for generic parameter",
                        opaque_param.kind.descr(),
                        arg,
                    ),
                )
                .emit();
            return false;
        }
    }

    for (_, indices) in seen_params {
        if indices.len() > 1 {
            let descr = opaque_generics.param_at(indices[0], tcx).kind.descr();
            let spans: Vec<_> = indices
                .into_iter()
                .map(|i| tcx.def_span(opaque_generics.param_at(i, tcx).def_id))
                .collect();
            tcx.sess
                .struct_span_err(span, "non-defining opaque type use in defining scope")
                .span_note(spans, &format!("{} used multiple times", descr))
                .emit();
            return false;
        }
    }
    true
}

struct ReverseMapper<'tcx> {
    tcx: TyCtxt<'tcx>,

    key: ty::OpaqueTypeKey<'tcx>,
    map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>>,
    map_missing_regions_to_empty: bool,

    /// initially `Some`, set to `None` once error has been reported
    hidden_ty: Option<Ty<'tcx>>,

    /// Span of function being checked.
    span: Span,
}

impl<'tcx> ReverseMapper<'tcx> {
    fn new(
        tcx: TyCtxt<'tcx>,
        key: ty::OpaqueTypeKey<'tcx>,
        map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>>,
        hidden_ty: Ty<'tcx>,
        span: Span,
    ) -> Self {
        Self {
            tcx,
            key,
            map,
            map_missing_regions_to_empty: false,
            hidden_ty: Some(hidden_ty),
            span,
        }
    }

    fn fold_kind_mapping_missing_regions_to_empty(
        &mut self,
        kind: GenericArg<'tcx>,
    ) -> GenericArg<'tcx> {
        assert!(!self.map_missing_regions_to_empty);
        self.map_missing_regions_to_empty = true;
        let kind = kind.fold_with(self);
        self.map_missing_regions_to_empty = false;
        kind
    }

    fn fold_kind_normally(&mut self, kind: GenericArg<'tcx>) -> GenericArg<'tcx> {
        assert!(!self.map_missing_regions_to_empty);
        kind.fold_with(self)
    }
}

impl<'tcx> TypeFolder<'tcx> for ReverseMapper<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    #[instrument(skip(self), level = "debug")]
    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        match *r {
            // Ignore bound regions and `'static` regions that appear in the
            // type, we only need to remap regions that reference lifetimes
            // from the function declaration.
            // This would ignore `'r` in a type like `for<'r> fn(&'r u32)`.
            ty::ReLateBound(..) | ty::ReStatic => return r,

            // If regions have been erased (by writeback), don't try to unerase
            // them.
            ty::ReErased => return r,

            // The regions that we expect from borrow checking.
            ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReEmpty(ty::UniverseIndex::ROOT) => {}

            ty::ReEmpty(_) | ty::RePlaceholder(_) | ty::ReVar(_) => {
                // All of the regions in the type should either have been
                // erased by writeback, or mapped back to named regions by
                // borrow checking.
                bug!("unexpected region kind in opaque type: {:?}", r);
            }
        }

        let generics = self.tcx().generics_of(self.key.def_id);
        match self.map.get(&r.into()).map(|k| k.unpack()) {
            Some(GenericArgKind::Lifetime(r1)) => r1,
            Some(u) => panic!("region mapped to unexpected kind: {:?}", u),
            None if self.map_missing_regions_to_empty => self.tcx.lifetimes.re_root_empty,
            None if generics.parent.is_some() => {
                if let Some(hidden_ty) = self.hidden_ty.take() {
                    unexpected_hidden_region_diagnostic(
                        self.tcx,
                        self.tcx.def_span(self.key.def_id),
                        hidden_ty,
                        r,
                        self.key,
                    )
                    .emit();
                }
                self.tcx.lifetimes.re_root_empty
            }
            None => {
                self.tcx
                    .sess
                    .struct_span_err(self.span, "non-defining opaque type use in defining scope")
                    .span_label(
                        self.span,
                        format!(
                            "lifetime `{}` is part of concrete type but not used in \
                                 parameter list of the `impl Trait` type alias",
                            r
                        ),
                    )
                    .emit();

                self.tcx().lifetimes.re_static
            }
        }
    }

    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        match *ty.kind() {
            ty::Closure(def_id, substs) => {
                // I am a horrible monster and I pray for death. When
                // we encounter a closure here, it is always a closure
                // from within the function that we are currently
                // type-checking -- one that is now being encapsulated
                // in an opaque type. Ideally, we would
                // go through the types/lifetimes that it references
                // and treat them just like we would any other type,
                // which means we would error out if we find any
                // reference to a type/region that is not in the
                // "reverse map".
                //
                // **However,** in the case of closures, there is a
                // somewhat subtle (read: hacky) consideration. The
                // problem is that our closure types currently include
                // all the lifetime parameters declared on the
                // enclosing function, even if they are unused by the
                // closure itself. We can't readily filter them out,
                // so here we replace those values with `'empty`. This
                // can't really make a difference to the rest of the
                // compiler; those regions are ignored for the
                // outlives relation, and hence don't affect trait
                // selection or auto traits, and they are erased
                // during codegen.

                let generics = self.tcx.generics_of(def_id);
                let substs = self.tcx.mk_substs(substs.iter().enumerate().map(|(index, kind)| {
                    if index < generics.parent_count {
                        // Accommodate missing regions in the parent kinds...
                        self.fold_kind_mapping_missing_regions_to_empty(kind)
                    } else {
                        // ...but not elsewhere.
                        self.fold_kind_normally(kind)
                    }
                }));

                self.tcx.mk_closure(def_id, substs)
            }

            ty::Generator(def_id, substs, movability) => {
                let generics = self.tcx.generics_of(def_id);
                let substs = self.tcx.mk_substs(substs.iter().enumerate().map(|(index, kind)| {
                    if index < generics.parent_count {
                        // Accommodate missing regions in the parent kinds...
                        self.fold_kind_mapping_missing_regions_to_empty(kind)
                    } else {
                        // ...but not elsewhere.
                        self.fold_kind_normally(kind)
                    }
                }));

                self.tcx.mk_generator(def_id, substs, movability)
            }

            ty::Param(param) => {
                // Look it up in the substitution list.
                match self.map.get(&ty.into()).map(|k| k.unpack()) {
                    // Found it in the substitution list; replace with the parameter from the
                    // opaque type.
                    Some(GenericArgKind::Type(t1)) => t1,
                    Some(u) => panic!("type mapped to unexpected kind: {:?}", u),
                    None => {
                        debug!(?param, ?self.map);
                        self.tcx
                            .sess
                            .struct_span_err(
                                self.span,
                                &format!(
                                    "type parameter `{}` is part of concrete type but not \
                                          used in parameter list for the `impl Trait` type alias",
                                    ty
                                ),
                            )
                            .emit();

                        self.tcx().ty_error()
                    }
                }
            }

            _ => ty.super_fold_with(self),
        }
    }

    fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
        trace!("checking const {:?}", ct);
        // Find a const parameter
        match ct.kind() {
            ty::ConstKind::Param(..) => {
                // Look it up in the substitution list.
                match self.map.get(&ct.into()).map(|k| k.unpack()) {
                    // Found it in the substitution list, replace with the parameter from the
                    // opaque type.
                    Some(GenericArgKind::Const(c1)) => c1,
                    Some(u) => panic!("const mapped to unexpected kind: {:?}", u),
                    None => {
                        self.tcx
                            .sess
                            .struct_span_err(
                                self.span,
                                &format!(
                                    "const parameter `{}` is part of concrete type but not \
                                          used in parameter list for the `impl Trait` type alias",
                                    ct
                                ),
                            )
                            .emit();

                        self.tcx().const_error(ct.ty())
                    }
                }
            }

            _ => ct,
        }
    }
}