summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_borrowck/src/type_check/liveness/mod.rs
blob: a411aec518e93cd832f381e99f1bd8e26642905c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
use itertools::{Either, Itertools};
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::mir::{Body, Local};
use rustc_middle::ty::{RegionVid, TyCtxt};
use rustc_mir_dataflow::impls::MaybeInitializedPlaces;
use rustc_mir_dataflow::move_paths::MoveData;
use rustc_mir_dataflow::ResultsCursor;
use std::rc::Rc;

use crate::{
    constraints::OutlivesConstraintSet,
    facts::{AllFacts, AllFactsExt},
    location::LocationTable,
    nll::ToRegionVid,
    region_infer::values::RegionValueElements,
    universal_regions::UniversalRegions,
};

use super::TypeChecker;

mod local_use_map;
mod polonius;
mod trace;

/// Combines liveness analysis with initialization analysis to
/// determine which variables are live at which points, both due to
/// ordinary uses and drops. Returns a set of (ty, location) pairs
/// that indicate which types must be live at which point in the CFG.
/// This vector is consumed by `constraint_generation`.
///
/// N.B., this computation requires normalization; therefore, it must be
/// performed before
pub(super) fn generate<'mir, 'tcx>(
    typeck: &mut TypeChecker<'_, 'tcx>,
    body: &Body<'tcx>,
    elements: &Rc<RegionValueElements>,
    flow_inits: &mut ResultsCursor<'mir, 'tcx, MaybeInitializedPlaces<'mir, 'tcx>>,
    move_data: &MoveData<'tcx>,
    location_table: &LocationTable,
    use_polonius: bool,
) {
    debug!("liveness::generate");

    let free_regions = regions_that_outlive_free_regions(
        typeck.infcx.num_region_vars(),
        &typeck.borrowck_context.universal_regions,
        &typeck.borrowck_context.constraints.outlives_constraints,
    );
    let (relevant_live_locals, boring_locals) =
        compute_relevant_live_locals(typeck.tcx(), &free_regions, &body);
    let facts_enabled = use_polonius || AllFacts::enabled(typeck.tcx());

    let polonius_drop_used = facts_enabled.then(|| {
        let mut drop_used = Vec::new();
        polonius::populate_access_facts(typeck, body, location_table, move_data, &mut drop_used);
        drop_used
    });

    trace::trace(
        typeck,
        body,
        elements,
        flow_inits,
        move_data,
        relevant_live_locals,
        boring_locals,
        polonius_drop_used,
    );
}

// The purpose of `compute_relevant_live_locals` is to define the subset of `Local`
// variables for which we need to do a liveness computation. We only need
// to compute whether a variable `X` is live if that variable contains
// some region `R` in its type where `R` is not known to outlive a free
// region (i.e., where `R` may be valid for just a subset of the fn body).
fn compute_relevant_live_locals<'tcx>(
    tcx: TyCtxt<'tcx>,
    free_regions: &FxHashSet<RegionVid>,
    body: &Body<'tcx>,
) -> (Vec<Local>, Vec<Local>) {
    let (boring_locals, relevant_live_locals): (Vec<_>, Vec<_>) =
        body.local_decls.iter_enumerated().partition_map(|(local, local_decl)| {
            if tcx.all_free_regions_meet(&local_decl.ty, |r| {
                free_regions.contains(&r.to_region_vid())
            }) {
                Either::Left(local)
            } else {
                Either::Right(local)
            }
        });

    debug!("{} total variables", body.local_decls.len());
    debug!("{} variables need liveness", relevant_live_locals.len());
    debug!("{} regions outlive free regions", free_regions.len());

    (relevant_live_locals, boring_locals)
}

/// Computes all regions that are (currently) known to outlive free
/// regions. For these regions, we do not need to compute
/// liveness, since the outlives constraints will ensure that they
/// are live over the whole fn body anyhow.
fn regions_that_outlive_free_regions<'tcx>(
    num_region_vars: usize,
    universal_regions: &UniversalRegions<'tcx>,
    constraint_set: &OutlivesConstraintSet<'tcx>,
) -> FxHashSet<RegionVid> {
    // Build a graph of the outlives constraints thus far. This is
    // a reverse graph, so for each constraint `R1: R2` we have an
    // edge `R2 -> R1`. Therefore, if we find all regions
    // reachable from each free region, we will have all the
    // regions that are forced to outlive some free region.
    let rev_constraint_graph = constraint_set.reverse_graph(num_region_vars);
    let fr_static = universal_regions.fr_static;
    let rev_region_graph = rev_constraint_graph.region_graph(constraint_set, fr_static);

    // Stack for the depth-first search. Start out with all the free regions.
    let mut stack: Vec<_> = universal_regions.universal_regions().collect();

    // Set of all free regions, plus anything that outlives them. Initially
    // just contains the free regions.
    let mut outlives_free_region: FxHashSet<_> = stack.iter().cloned().collect();

    // Do the DFS -- for each thing in the stack, find all things
    // that outlive it and add them to the set. If they are not,
    // push them onto the stack for later.
    while let Some(sub_region) = stack.pop() {
        stack.extend(
            rev_region_graph
                .outgoing_regions(sub_region)
                .filter(|&r| outlives_free_region.insert(r)),
        );
    }

    // Return the final set of things we visited.
    outlives_free_region
}