1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
#[cfg(feature = "master")]
use gccjit::{FnAttribute, VarAttribute, Visibility};
use gccjit::{Function, GlobalKind, LValue, RValue, ToRValue};
use rustc_codegen_ssa::traits::{BaseTypeMethods, ConstMethods, DerivedTypeMethods, StaticMethods};
use rustc_middle::span_bug;
use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
use rustc_middle::mir::mono::MonoItem;
use rustc_middle::ty::{self, Instance, Ty};
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::mir::interpret::{self, ConstAllocation, ErrorHandled, Scalar as InterpScalar, read_target_uint};
use rustc_span::def_id::DefId;
use rustc_target::abi::{self, Align, HasDataLayout, Primitive, Size, WrappingRange};
use crate::base;
use crate::context::CodegenCx;
use crate::errors::InvalidMinimumAlignment;
use crate::type_of::LayoutGccExt;
fn set_global_alignment<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, gv: LValue<'gcc>, mut align: Align) {
// The target may require greater alignment for globals than the type does.
// Note: GCC and Clang also allow `__attribute__((aligned))` on variables,
// which can force it to be smaller. Rust doesn't support this yet.
if let Some(min) = cx.sess().target.min_global_align {
match Align::from_bits(min) {
Ok(min) => align = align.max(min),
Err(err) => {
cx.sess().emit_err(InvalidMinimumAlignment { err: err.to_string() });
}
}
}
gv.set_alignment(align.bytes() as i32);
}
impl<'gcc, 'tcx> StaticMethods for CodegenCx<'gcc, 'tcx> {
fn static_addr_of(&self, cv: RValue<'gcc>, align: Align, kind: Option<&str>) -> RValue<'gcc> {
// TODO(antoyo): implement a proper rvalue comparison in libgccjit instead of doing the
// following:
for (value, variable) in &*self.const_globals.borrow() {
if format!("{:?}", value) == format!("{:?}", cv) {
if let Some(global_variable) = self.global_lvalues.borrow().get(variable) {
let alignment = align.bits() as i32;
if alignment > global_variable.get_alignment() {
global_variable.set_alignment(alignment);
}
}
return *variable;
}
}
let global_value = self.static_addr_of_mut(cv, align, kind);
#[cfg(feature = "master")]
self.global_lvalues.borrow().get(&global_value)
.expect("`static_addr_of_mut` did not add the global to `self.global_lvalues`")
.global_set_readonly();
self.const_globals.borrow_mut().insert(cv, global_value);
global_value
}
fn codegen_static(&self, def_id: DefId, is_mutable: bool) {
let attrs = self.tcx.codegen_fn_attrs(def_id);
let value =
match codegen_static_initializer(&self, def_id) {
Ok((value, _)) => value,
// Error has already been reported
Err(_) => return,
};
let global = self.get_static(def_id);
// boolean SSA values are i1, but they have to be stored in i8 slots,
// otherwise some LLVM optimization passes don't work as expected
let val_llty = self.val_ty(value);
let value =
if val_llty == self.type_i1() {
unimplemented!();
}
else {
value
};
let instance = Instance::mono(self.tcx, def_id);
let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all());
let gcc_type = self.layout_of(ty).gcc_type(self);
set_global_alignment(self, global, self.align_of(ty));
let value = self.bitcast_if_needed(value, gcc_type);
global.global_set_initializer_rvalue(value);
// As an optimization, all shared statics which do not have interior
// mutability are placed into read-only memory.
if !is_mutable {
if self.type_is_freeze(ty) {
#[cfg(feature = "master")]
global.global_set_readonly();
}
}
if attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) {
// Do not allow LLVM to change the alignment of a TLS on macOS.
//
// By default a global's alignment can be freely increased.
// This allows LLVM to generate more performant instructions
// e.g., using load-aligned into a SIMD register.
//
// However, on macOS 10.10 or below, the dynamic linker does not
// respect any alignment given on the TLS (radar 24221680).
// This will violate the alignment assumption, and causing segfault at runtime.
//
// This bug is very easy to trigger. In `println!` and `panic!`,
// the `LOCAL_STDOUT`/`LOCAL_STDERR` handles are stored in a TLS,
// which the values would be `mem::replace`d on initialization.
// The implementation of `mem::replace` will use SIMD
// whenever the size is 32 bytes or higher. LLVM notices SIMD is used
// and tries to align `LOCAL_STDOUT`/`LOCAL_STDERR` to a 32-byte boundary,
// which macOS's dyld disregarded and causing crashes
// (see issues #51794, #51758, #50867, #48866 and #44056).
//
// To workaround the bug, we trick LLVM into not increasing
// the global's alignment by explicitly assigning a section to it
// (equivalent to automatically generating a `#[link_section]` attribute).
// See the comment in the `GlobalValue::canIncreaseAlignment()` function
// of `lib/IR/Globals.cpp` for why this works.
//
// When the alignment is not increased, the optimized `mem::replace`
// will use load-unaligned instructions instead, and thus avoiding the crash.
//
// We could remove this hack whenever we decide to drop macOS 10.10 support.
if self.tcx.sess.target.options.is_like_osx {
// The `inspect` method is okay here because we checked for provenance, and
// because we are doing this access to inspect the final interpreter state
// (not as part of the interpreter execution).
//
// FIXME: This check requires that the (arbitrary) value of undefined bytes
// happens to be zero. Instead, we should only check the value of defined bytes
// and set all undefined bytes to zero if this allocation is headed for the
// BSS.
unimplemented!();
}
}
// Wasm statics with custom link sections get special treatment as they
// go into custom sections of the wasm executable.
if self.tcx.sess.opts.target_triple.triple().starts_with("wasm32") {
if let Some(_section) = attrs.link_section {
unimplemented!();
}
} else {
// TODO(antoyo): set link section.
}
if attrs.flags.contains(CodegenFnAttrFlags::USED) || attrs.flags.contains(CodegenFnAttrFlags::USED_LINKER) {
self.add_used_global(global.to_rvalue());
}
}
/// Add a global value to a list to be stored in the `llvm.used` variable, an array of i8*.
fn add_used_global(&self, _global: RValue<'gcc>) {
// TODO(antoyo)
}
fn add_compiler_used_global(&self, global: RValue<'gcc>) {
// NOTE: seems like GCC does not make the distinction between compiler.used and used.
self.add_used_global(global);
}
}
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
#[cfg_attr(not(feature="master"), allow(unused_variables))]
pub fn add_used_function(&self, function: Function<'gcc>) {
#[cfg(feature = "master")]
function.add_attribute(FnAttribute::Used);
}
pub fn static_addr_of_mut(&self, cv: RValue<'gcc>, align: Align, kind: Option<&str>) -> RValue<'gcc> {
let global =
match kind {
Some(kind) if !self.tcx.sess.fewer_names() => {
let name = self.generate_local_symbol_name(kind);
// TODO(antoyo): check if it's okay that no link_section is set.
let typ = self.val_ty(cv).get_aligned(align.bytes());
let global = self.declare_private_global(&name[..], typ);
global
}
_ => {
let typ = self.val_ty(cv).get_aligned(align.bytes());
let global = self.declare_unnamed_global(typ);
global
},
};
global.global_set_initializer_rvalue(cv);
// TODO(antoyo): set unnamed address.
let rvalue = global.get_address(None);
self.global_lvalues.borrow_mut().insert(rvalue, global);
rvalue
}
pub fn get_static(&self, def_id: DefId) -> LValue<'gcc> {
let instance = Instance::mono(self.tcx, def_id);
let fn_attrs = self.tcx.codegen_fn_attrs(def_id);
if let Some(&global) = self.instances.borrow().get(&instance) {
return global;
}
let defined_in_current_codegen_unit =
self.codegen_unit.items().contains_key(&MonoItem::Static(def_id));
assert!(
!defined_in_current_codegen_unit,
"consts::get_static() should always hit the cache for \
statics defined in the same CGU, but did not for `{:?}`",
def_id
);
let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all());
let sym = self.tcx.symbol_name(instance).name;
let global =
if def_id.is_local() && !self.tcx.is_foreign_item(def_id) {
let llty = self.layout_of(ty).gcc_type(self);
if let Some(global) = self.get_declared_value(sym) {
if self.val_ty(global) != self.type_ptr_to(llty) {
span_bug!(self.tcx.def_span(def_id), "Conflicting types for static");
}
}
let is_tls = fn_attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL);
let global = self.declare_global(
&sym,
llty,
GlobalKind::Exported,
is_tls,
fn_attrs.link_section,
);
if !self.tcx.is_reachable_non_generic(def_id) {
#[cfg(feature = "master")]
global.add_attribute(VarAttribute::Visibility(Visibility::Hidden));
}
global
} else {
check_and_apply_linkage(&self, &fn_attrs, ty, sym)
};
if !def_id.is_local() {
let needs_dll_storage_attr = false; // TODO(antoyo)
// If this assertion triggers, there's something wrong with commandline
// argument validation.
debug_assert!(
!(self.tcx.sess.opts.cg.linker_plugin_lto.enabled()
&& self.tcx.sess.target.options.is_like_msvc
&& self.tcx.sess.opts.cg.prefer_dynamic)
);
if needs_dll_storage_attr {
// This item is external but not foreign, i.e., it originates from an external Rust
// crate. Since we don't know whether this crate will be linked dynamically or
// statically in the final application, we always mark such symbols as 'dllimport'.
// If final linkage happens to be static, we rely on compiler-emitted __imp_ stubs
// to make things work.
//
// However, in some scenarios we defer emission of statics to downstream
// crates, so there are cases where a static with an upstream DefId
// is actually present in the current crate. We can find out via the
// is_codegened_item query.
if !self.tcx.is_codegened_item(def_id) {
unimplemented!();
}
}
}
// TODO(antoyo): set dll storage class.
self.instances.borrow_mut().insert(instance, global);
global
}
}
pub fn const_alloc_to_gcc<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, alloc: ConstAllocation<'tcx>) -> RValue<'gcc> {
let alloc = alloc.inner();
let mut llvals = Vec::with_capacity(alloc.provenance().ptrs().len() + 1);
let dl = cx.data_layout();
let pointer_size = dl.pointer_size.bytes() as usize;
let mut next_offset = 0;
for &(offset, prov) in alloc.provenance().ptrs().iter() {
let alloc_id = prov.alloc_id();
let offset = offset.bytes();
assert_eq!(offset as usize as u64, offset);
let offset = offset as usize;
if offset > next_offset {
// This `inspect` is okay since we have checked that it is not within a pointer with provenance, it
// is within the bounds of the allocation, and it doesn't affect interpreter execution
// (we inspect the result after interpreter execution). Any undef byte is replaced with
// some arbitrary byte value.
//
// FIXME: relay undef bytes to codegen as undef const bytes
let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(next_offset..offset);
llvals.push(cx.const_bytes(bytes));
}
let ptr_offset =
read_target_uint( dl.endian,
// This `inspect` is okay since it is within the bounds of the allocation, it doesn't
// affect interpreter execution (we inspect the result after interpreter execution),
// and we properly interpret the provenance as a relocation pointer offset.
alloc.inspect_with_uninit_and_ptr_outside_interpreter(offset..(offset + pointer_size)),
)
.expect("const_alloc_to_llvm: could not read relocation pointer")
as u64;
let address_space = cx.tcx.global_alloc(alloc_id).address_space(cx);
llvals.push(cx.scalar_to_backend(
InterpScalar::from_pointer(
interpret::Pointer::new(prov, Size::from_bytes(ptr_offset)),
&cx.tcx,
),
abi::Scalar::Initialized { value: Primitive::Pointer(address_space), valid_range: WrappingRange::full(dl.pointer_size) },
cx.type_i8p_ext(address_space),
));
next_offset = offset + pointer_size;
}
if alloc.len() >= next_offset {
let range = next_offset..alloc.len();
// This `inspect` is okay since we have check that it is after all provenance, it is
// within the bounds of the allocation, and it doesn't affect interpreter execution (we
// inspect the result after interpreter execution). Any undef byte is replaced with some
// arbitrary byte value.
//
// FIXME: relay undef bytes to codegen as undef const bytes
let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(range);
llvals.push(cx.const_bytes(bytes));
}
cx.const_struct(&llvals, true)
}
pub fn codegen_static_initializer<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, def_id: DefId) -> Result<(RValue<'gcc>, ConstAllocation<'tcx>), ErrorHandled> {
let alloc = cx.tcx.eval_static_initializer(def_id)?;
Ok((const_alloc_to_gcc(cx, alloc), alloc))
}
fn check_and_apply_linkage<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, attrs: &CodegenFnAttrs, ty: Ty<'tcx>, sym: &str) -> LValue<'gcc> {
let is_tls = attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL);
let gcc_type = cx.layout_of(ty).gcc_type(cx);
if let Some(linkage) = attrs.import_linkage {
// Declare a symbol `foo` with the desired linkage.
let global1 = cx.declare_global_with_linkage(&sym, cx.type_i8(), base::global_linkage_to_gcc(linkage));
// Declare an internal global `extern_with_linkage_foo` which
// is initialized with the address of `foo`. If `foo` is
// discarded during linking (for example, if `foo` has weak
// linkage and there are no definitions), then
// `extern_with_linkage_foo` will instead be initialized to
// zero.
let mut real_name = "_rust_extern_with_linkage_".to_string();
real_name.push_str(&sym);
let global2 = cx.define_global(&real_name, gcc_type, is_tls, attrs.link_section);
// TODO(antoyo): set linkage.
let value = cx.const_ptrcast(global1.get_address(None), gcc_type);
global2.global_set_initializer_rvalue(value);
// TODO(antoyo): use global_set_initializer() when it will work.
global2
}
else {
// Generate an external declaration.
// FIXME(nagisa): investigate whether it can be changed into define_global
// Thread-local statics in some other crate need to *always* be linked
// against in a thread-local fashion, so we need to be sure to apply the
// thread-local attribute locally if it was present remotely. If we
// don't do this then linker errors can be generated where the linker
// complains that one object files has a thread local version of the
// symbol and another one doesn't.
cx.declare_global(&sym, gcc_type, GlobalKind::Imported, is_tls, attrs.link_section)
}
}
|