1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
|
pub mod llvm;
mod simd;
use gccjit::{ComparisonOp, Function, RValue, ToRValue, Type, UnaryOp, FunctionType};
use rustc_codegen_ssa::MemFlags;
use rustc_codegen_ssa::base::wants_msvc_seh;
use rustc_codegen_ssa::common::{IntPredicate, span_invalid_monomorphization_error};
use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::{ArgAbiMethods, BaseTypeMethods, BuilderMethods, ConstMethods, IntrinsicCallMethods};
use rustc_middle::bug;
use rustc_middle::ty::{self, Instance, Ty};
use rustc_middle::ty::layout::LayoutOf;
use rustc_span::{Span, Symbol, symbol::kw, sym};
use rustc_target::abi::HasDataLayout;
use rustc_target::abi::call::{ArgAbi, FnAbi, PassMode};
use rustc_target::spec::PanicStrategy;
use crate::abi::GccType;
use crate::builder::Builder;
use crate::common::{SignType, TypeReflection};
use crate::context::CodegenCx;
use crate::type_of::LayoutGccExt;
use crate::intrinsic::simd::generic_simd_intrinsic;
fn get_simple_intrinsic<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, name: Symbol) -> Option<Function<'gcc>> {
let gcc_name = match name {
sym::sqrtf32 => "sqrtf",
sym::sqrtf64 => "sqrt",
sym::powif32 => "__builtin_powif",
sym::powif64 => "__builtin_powi",
sym::sinf32 => "sinf",
sym::sinf64 => "sin",
sym::cosf32 => "cosf",
sym::cosf64 => "cos",
sym::powf32 => "powf",
sym::powf64 => "pow",
sym::expf32 => "expf",
sym::expf64 => "exp",
sym::exp2f32 => "exp2f",
sym::exp2f64 => "exp2",
sym::logf32 => "logf",
sym::logf64 => "log",
sym::log10f32 => "log10f",
sym::log10f64 => "log10",
sym::log2f32 => "log2f",
sym::log2f64 => "log2",
sym::fmaf32 => "fmaf",
sym::fmaf64 => "fma",
sym::fabsf32 => "fabsf",
sym::fabsf64 => "fabs",
sym::minnumf32 => "fminf",
sym::minnumf64 => "fmin",
sym::maxnumf32 => "fmaxf",
sym::maxnumf64 => "fmax",
sym::copysignf32 => "copysignf",
sym::copysignf64 => "copysign",
sym::floorf32 => "floorf",
sym::floorf64 => "floor",
sym::ceilf32 => "ceilf",
sym::ceilf64 => "ceil",
sym::truncf32 => "truncf",
sym::truncf64 => "trunc",
sym::rintf32 => "rintf",
sym::rintf64 => "rint",
sym::nearbyintf32 => "nearbyintf",
sym::nearbyintf64 => "nearbyint",
sym::roundf32 => "roundf",
sym::roundf64 => "round",
sym::abort => "abort",
_ => return None,
};
Some(cx.context.get_builtin_function(&gcc_name))
}
impl<'a, 'gcc, 'tcx> IntrinsicCallMethods<'tcx> for Builder<'a, 'gcc, 'tcx> {
fn codegen_intrinsic_call(&mut self, instance: Instance<'tcx>, fn_abi: &FnAbi<'tcx, Ty<'tcx>>, args: &[OperandRef<'tcx, RValue<'gcc>>], llresult: RValue<'gcc>, span: Span) {
let tcx = self.tcx;
let callee_ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
let (def_id, substs) = match *callee_ty.kind() {
ty::FnDef(def_id, substs) => (def_id, substs),
_ => bug!("expected fn item type, found {}", callee_ty),
};
let sig = callee_ty.fn_sig(tcx);
let sig = tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), sig);
let arg_tys = sig.inputs();
let ret_ty = sig.output();
let name = tcx.item_name(def_id);
let name_str = name.as_str();
let llret_ty = self.layout_of(ret_ty).gcc_type(self, true);
let result = PlaceRef::new_sized(llresult, fn_abi.ret.layout);
let simple = get_simple_intrinsic(self, name);
let llval =
match name {
_ if simple.is_some() => {
// FIXME(antoyo): remove this cast when the API supports function.
let func = unsafe { std::mem::transmute(simple.expect("simple")) };
self.call(self.type_void(), func, &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(), None)
},
sym::likely => {
self.expect(args[0].immediate(), true)
}
sym::unlikely => {
self.expect(args[0].immediate(), false)
}
kw::Try => {
try_intrinsic(
self,
args[0].immediate(),
args[1].immediate(),
args[2].immediate(),
llresult,
);
return;
}
sym::breakpoint => {
unimplemented!();
}
sym::va_copy => {
unimplemented!();
}
sym::va_arg => {
unimplemented!();
}
sym::volatile_load | sym::unaligned_volatile_load => {
let tp_ty = substs.type_at(0);
let mut ptr = args[0].immediate();
if let PassMode::Cast(ty) = fn_abi.ret.mode {
ptr = self.pointercast(ptr, self.type_ptr_to(ty.gcc_type(self)));
}
let load = self.volatile_load(ptr.get_type(), ptr);
// TODO(antoyo): set alignment.
self.to_immediate(load, self.layout_of(tp_ty))
}
sym::volatile_store => {
let dst = args[0].deref(self.cx());
args[1].val.volatile_store(self, dst);
return;
}
sym::unaligned_volatile_store => {
let dst = args[0].deref(self.cx());
args[1].val.unaligned_volatile_store(self, dst);
return;
}
sym::prefetch_read_data
| sym::prefetch_write_data
| sym::prefetch_read_instruction
| sym::prefetch_write_instruction => {
unimplemented!();
}
sym::ctlz
| sym::ctlz_nonzero
| sym::cttz
| sym::cttz_nonzero
| sym::ctpop
| sym::bswap
| sym::bitreverse
| sym::rotate_left
| sym::rotate_right
| sym::saturating_add
| sym::saturating_sub => {
let ty = arg_tys[0];
match int_type_width_signed(ty, self) {
Some((width, signed)) => match name {
sym::ctlz | sym::cttz => {
let func = self.current_func.borrow().expect("func");
let then_block = func.new_block("then");
let else_block = func.new_block("else");
let after_block = func.new_block("after");
let arg = args[0].immediate();
let result = func.new_local(None, arg.get_type(), "zeros");
let zero = self.cx.gcc_zero(arg.get_type());
let cond = self.gcc_icmp(IntPredicate::IntEQ, arg, zero);
self.llbb().end_with_conditional(None, cond, then_block, else_block);
let zero_result = self.cx.gcc_uint(arg.get_type(), width);
then_block.add_assignment(None, result, zero_result);
then_block.end_with_jump(None, after_block);
// NOTE: since jumps were added in a place
// count_leading_zeroes() does not expect, the current block
// in the state need to be updated.
self.switch_to_block(else_block);
let zeros =
match name {
sym::ctlz => self.count_leading_zeroes(width, arg),
sym::cttz => self.count_trailing_zeroes(width, arg),
_ => unreachable!(),
};
self.llbb().add_assignment(None, result, zeros);
self.llbb().end_with_jump(None, after_block);
// NOTE: since jumps were added in a place rustc does not
// expect, the current block in the state need to be updated.
self.switch_to_block(after_block);
result.to_rvalue()
}
sym::ctlz_nonzero => {
self.count_leading_zeroes(width, args[0].immediate())
},
sym::cttz_nonzero => {
self.count_trailing_zeroes(width, args[0].immediate())
}
sym::ctpop => self.pop_count(args[0].immediate()),
sym::bswap => {
if width == 8 {
args[0].immediate() // byte swap a u8/i8 is just a no-op
}
else {
self.gcc_bswap(args[0].immediate(), width)
}
},
sym::bitreverse => self.bit_reverse(width, args[0].immediate()),
sym::rotate_left | sym::rotate_right => {
// TODO(antoyo): implement using algorithm from:
// https://blog.regehr.org/archives/1063
// for other platforms.
let is_left = name == sym::rotate_left;
let val = args[0].immediate();
let raw_shift = args[1].immediate();
if is_left {
self.rotate_left(val, raw_shift, width)
}
else {
self.rotate_right(val, raw_shift, width)
}
},
sym::saturating_add => {
self.saturating_add(args[0].immediate(), args[1].immediate(), signed, width)
},
sym::saturating_sub => {
self.saturating_sub(args[0].immediate(), args[1].immediate(), signed, width)
},
_ => bug!(),
},
None => {
span_invalid_monomorphization_error(
tcx.sess,
span,
&format!(
"invalid monomorphization of `{}` intrinsic: \
expected basic integer type, found `{}`",
name, ty
),
);
return;
}
}
}
sym::raw_eq => {
use rustc_target::abi::Abi::*;
let tp_ty = substs.type_at(0);
let layout = self.layout_of(tp_ty).layout;
let _use_integer_compare = match layout.abi() {
Scalar(_) | ScalarPair(_, _) => true,
Uninhabited | Vector { .. } => false,
Aggregate { .. } => {
// For rusty ABIs, small aggregates are actually passed
// as `RegKind::Integer` (see `FnAbi::adjust_for_abi`),
// so we re-use that same threshold here.
layout.size() <= self.data_layout().pointer_size * 2
}
};
let a = args[0].immediate();
let b = args[1].immediate();
if layout.size().bytes() == 0 {
self.const_bool(true)
}
/*else if use_integer_compare {
let integer_ty = self.type_ix(layout.size.bits()); // FIXME(antoyo): LLVM creates an integer of 96 bits for [i32; 3], but gcc doesn't support this, so it creates an integer of 128 bits.
let ptr_ty = self.type_ptr_to(integer_ty);
let a_ptr = self.bitcast(a, ptr_ty);
let a_val = self.load(integer_ty, a_ptr, layout.align.abi);
let b_ptr = self.bitcast(b, ptr_ty);
let b_val = self.load(integer_ty, b_ptr, layout.align.abi);
self.icmp(IntPredicate::IntEQ, a_val, b_val)
}*/
else {
let void_ptr_type = self.context.new_type::<*const ()>();
let a_ptr = self.bitcast(a, void_ptr_type);
let b_ptr = self.bitcast(b, void_ptr_type);
let n = self.context.new_cast(None, self.const_usize(layout.size().bytes()), self.sizet_type);
let builtin = self.context.get_builtin_function("memcmp");
let cmp = self.context.new_call(None, builtin, &[a_ptr, b_ptr, n]);
self.icmp(IntPredicate::IntEQ, cmp, self.const_i32(0))
}
}
sym::black_box => {
args[0].val.store(self, result);
let block = self.llbb();
let extended_asm = block.add_extended_asm(None, "");
extended_asm.add_input_operand(None, "r", result.llval);
extended_asm.add_clobber("memory");
extended_asm.set_volatile_flag(true);
// We have copied the value to `result` already.
return;
}
_ if name_str.starts_with("simd_") => {
match generic_simd_intrinsic(self, name, callee_ty, args, ret_ty, llret_ty, span) {
Ok(llval) => llval,
Err(()) => return,
}
}
_ => bug!("unknown intrinsic '{}'", name),
};
if !fn_abi.ret.is_ignore() {
if let PassMode::Cast(ty) = fn_abi.ret.mode {
let ptr_llty = self.type_ptr_to(ty.gcc_type(self));
let ptr = self.pointercast(result.llval, ptr_llty);
self.store(llval, ptr, result.align);
}
else {
OperandRef::from_immediate_or_packed_pair(self, llval, result.layout)
.val
.store(self, result);
}
}
}
fn abort(&mut self) {
let func = self.context.get_builtin_function("abort");
let func: RValue<'gcc> = unsafe { std::mem::transmute(func) };
self.call(self.type_void(), func, &[], None);
}
fn assume(&mut self, value: Self::Value) {
// TODO(antoyo): switch to assume when it exists.
// Or use something like this:
// #define __assume(cond) do { if (!(cond)) __builtin_unreachable(); } while (0)
self.expect(value, true);
}
fn expect(&mut self, cond: Self::Value, _expected: bool) -> Self::Value {
// TODO(antoyo)
cond
}
fn type_test(&mut self, _pointer: Self::Value, _typeid: Self::Value) -> Self::Value {
// Unsupported.
self.context.new_rvalue_from_int(self.int_type, 0)
}
fn type_checked_load(
&mut self,
_llvtable: Self::Value,
_vtable_byte_offset: u64,
_typeid: Self::Value,
) -> Self::Value {
// Unsupported.
self.context.new_rvalue_from_int(self.int_type, 0)
}
fn va_start(&mut self, _va_list: RValue<'gcc>) -> RValue<'gcc> {
unimplemented!();
}
fn va_end(&mut self, _va_list: RValue<'gcc>) -> RValue<'gcc> {
unimplemented!();
}
}
impl<'a, 'gcc, 'tcx> ArgAbiMethods<'tcx> for Builder<'a, 'gcc, 'tcx> {
fn store_fn_arg(&mut self, arg_abi: &ArgAbi<'tcx, Ty<'tcx>>, idx: &mut usize, dst: PlaceRef<'tcx, Self::Value>) {
arg_abi.store_fn_arg(self, idx, dst)
}
fn store_arg(&mut self, arg_abi: &ArgAbi<'tcx, Ty<'tcx>>, val: RValue<'gcc>, dst: PlaceRef<'tcx, RValue<'gcc>>) {
arg_abi.store(self, val, dst)
}
fn arg_memory_ty(&self, arg_abi: &ArgAbi<'tcx, Ty<'tcx>>) -> Type<'gcc> {
arg_abi.memory_ty(self)
}
}
pub trait ArgAbiExt<'gcc, 'tcx> {
fn memory_ty(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
fn store(&self, bx: &mut Builder<'_, 'gcc, 'tcx>, val: RValue<'gcc>, dst: PlaceRef<'tcx, RValue<'gcc>>);
fn store_fn_arg(&self, bx: &mut Builder<'_, 'gcc, 'tcx>, idx: &mut usize, dst: PlaceRef<'tcx, RValue<'gcc>>);
}
impl<'gcc, 'tcx> ArgAbiExt<'gcc, 'tcx> for ArgAbi<'tcx, Ty<'tcx>> {
/// Gets the LLVM type for a place of the original Rust type of
/// this argument/return, i.e., the result of `type_of::type_of`.
fn memory_ty(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
self.layout.gcc_type(cx, true)
}
/// Stores a direct/indirect value described by this ArgAbi into a
/// place for the original Rust type of this argument/return.
/// Can be used for both storing formal arguments into Rust variables
/// or results of call/invoke instructions into their destinations.
fn store(&self, bx: &mut Builder<'_, 'gcc, 'tcx>, val: RValue<'gcc>, dst: PlaceRef<'tcx, RValue<'gcc>>) {
if self.is_ignore() {
return;
}
if self.is_sized_indirect() {
OperandValue::Ref(val, None, self.layout.align.abi).store(bx, dst)
}
else if self.is_unsized_indirect() {
bug!("unsized `ArgAbi` must be handled through `store_fn_arg`");
}
else if let PassMode::Cast(cast) = self.mode {
// FIXME(eddyb): Figure out when the simpler Store is safe, clang
// uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}.
let can_store_through_cast_ptr = false;
if can_store_through_cast_ptr {
let cast_ptr_llty = bx.type_ptr_to(cast.gcc_type(bx));
let cast_dst = bx.pointercast(dst.llval, cast_ptr_llty);
bx.store(val, cast_dst, self.layout.align.abi);
}
else {
// The actual return type is a struct, but the ABI
// adaptation code has cast it into some scalar type. The
// code that follows is the only reliable way I have
// found to do a transform like i64 -> {i32,i32}.
// Basically we dump the data onto the stack then memcpy it.
//
// Other approaches I tried:
// - Casting rust ret pointer to the foreign type and using Store
// is (a) unsafe if size of foreign type > size of rust type and
// (b) runs afoul of strict aliasing rules, yielding invalid
// assembly under -O (specifically, the store gets removed).
// - Truncating foreign type to correct integral type and then
// bitcasting to the struct type yields invalid cast errors.
// We instead thus allocate some scratch space...
let scratch_size = cast.size(bx);
let scratch_align = cast.align(bx);
let llscratch = bx.alloca(cast.gcc_type(bx), scratch_align);
bx.lifetime_start(llscratch, scratch_size);
// ... where we first store the value...
bx.store(val, llscratch, scratch_align);
// ... and then memcpy it to the intended destination.
bx.memcpy(
dst.llval,
self.layout.align.abi,
llscratch,
scratch_align,
bx.const_usize(self.layout.size.bytes()),
MemFlags::empty(),
);
bx.lifetime_end(llscratch, scratch_size);
}
}
else {
OperandValue::Immediate(val).store(bx, dst);
}
}
fn store_fn_arg<'a>(&self, bx: &mut Builder<'a, 'gcc, 'tcx>, idx: &mut usize, dst: PlaceRef<'tcx, RValue<'gcc>>) {
let mut next = || {
let val = bx.current_func().get_param(*idx as i32);
*idx += 1;
val.to_rvalue()
};
match self.mode {
PassMode::Ignore => {},
PassMode::Pair(..) => {
OperandValue::Pair(next(), next()).store(bx, dst);
},
PassMode::Indirect { extra_attrs: Some(_), .. } => {
OperandValue::Ref(next(), Some(next()), self.layout.align.abi).store(bx, dst);
},
PassMode::Direct(_) | PassMode::Indirect { extra_attrs: None, .. } | PassMode::Cast(_) => {
let next_arg = next();
self.store(bx, next_arg, dst);
},
}
}
}
fn int_type_width_signed<'gcc, 'tcx>(ty: Ty<'tcx>, cx: &CodegenCx<'gcc, 'tcx>) -> Option<(u64, bool)> {
match ty.kind() {
ty::Int(t) => Some((
match t {
rustc_middle::ty::IntTy::Isize => u64::from(cx.tcx.sess.target.pointer_width),
rustc_middle::ty::IntTy::I8 => 8,
rustc_middle::ty::IntTy::I16 => 16,
rustc_middle::ty::IntTy::I32 => 32,
rustc_middle::ty::IntTy::I64 => 64,
rustc_middle::ty::IntTy::I128 => 128,
},
true,
)),
ty::Uint(t) => Some((
match t {
rustc_middle::ty::UintTy::Usize => u64::from(cx.tcx.sess.target.pointer_width),
rustc_middle::ty::UintTy::U8 => 8,
rustc_middle::ty::UintTy::U16 => 16,
rustc_middle::ty::UintTy::U32 => 32,
rustc_middle::ty::UintTy::U64 => 64,
rustc_middle::ty::UintTy::U128 => 128,
},
false,
)),
_ => None,
}
}
impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> {
fn bit_reverse(&mut self, width: u64, value: RValue<'gcc>) -> RValue<'gcc> {
let result_type = value.get_type();
let typ = result_type.to_unsigned(self.cx);
let value =
if result_type.is_signed(self.cx) {
self.gcc_int_cast(value, typ)
}
else {
value
};
let context = &self.cx.context;
let result =
match width {
8 => {
// First step.
let left = self.and(value, context.new_rvalue_from_int(typ, 0xF0));
let left = self.lshr(left, context.new_rvalue_from_int(typ, 4));
let right = self.and(value, context.new_rvalue_from_int(typ, 0x0F));
let right = self.shl(right, context.new_rvalue_from_int(typ, 4));
let step1 = self.or(left, right);
// Second step.
let left = self.and(step1, context.new_rvalue_from_int(typ, 0xCC));
let left = self.lshr(left, context.new_rvalue_from_int(typ, 2));
let right = self.and(step1, context.new_rvalue_from_int(typ, 0x33));
let right = self.shl(right, context.new_rvalue_from_int(typ, 2));
let step2 = self.or(left, right);
// Third step.
let left = self.and(step2, context.new_rvalue_from_int(typ, 0xAA));
let left = self.lshr(left, context.new_rvalue_from_int(typ, 1));
let right = self.and(step2, context.new_rvalue_from_int(typ, 0x55));
let right = self.shl(right, context.new_rvalue_from_int(typ, 1));
let step3 = self.or(left, right);
step3
},
16 => {
// First step.
let left = self.and(value, context.new_rvalue_from_int(typ, 0x5555));
let left = self.shl(left, context.new_rvalue_from_int(typ, 1));
let right = self.and(value, context.new_rvalue_from_int(typ, 0xAAAA));
let right = self.lshr(right, context.new_rvalue_from_int(typ, 1));
let step1 = self.or(left, right);
// Second step.
let left = self.and(step1, context.new_rvalue_from_int(typ, 0x3333));
let left = self.shl(left, context.new_rvalue_from_int(typ, 2));
let right = self.and(step1, context.new_rvalue_from_int(typ, 0xCCCC));
let right = self.lshr(right, context.new_rvalue_from_int(typ, 2));
let step2 = self.or(left, right);
// Third step.
let left = self.and(step2, context.new_rvalue_from_int(typ, 0x0F0F));
let left = self.shl(left, context.new_rvalue_from_int(typ, 4));
let right = self.and(step2, context.new_rvalue_from_int(typ, 0xF0F0));
let right = self.lshr(right, context.new_rvalue_from_int(typ, 4));
let step3 = self.or(left, right);
// Fourth step.
let left = self.and(step3, context.new_rvalue_from_int(typ, 0x00FF));
let left = self.shl(left, context.new_rvalue_from_int(typ, 8));
let right = self.and(step3, context.new_rvalue_from_int(typ, 0xFF00));
let right = self.lshr(right, context.new_rvalue_from_int(typ, 8));
let step4 = self.or(left, right);
step4
},
32 => {
// TODO(antoyo): Refactor with other implementations.
// First step.
let left = self.and(value, context.new_rvalue_from_long(typ, 0x55555555));
let left = self.shl(left, context.new_rvalue_from_long(typ, 1));
let right = self.and(value, context.new_rvalue_from_long(typ, 0xAAAAAAAA));
let right = self.lshr(right, context.new_rvalue_from_long(typ, 1));
let step1 = self.or(left, right);
// Second step.
let left = self.and(step1, context.new_rvalue_from_long(typ, 0x33333333));
let left = self.shl(left, context.new_rvalue_from_long(typ, 2));
let right = self.and(step1, context.new_rvalue_from_long(typ, 0xCCCCCCCC));
let right = self.lshr(right, context.new_rvalue_from_long(typ, 2));
let step2 = self.or(left, right);
// Third step.
let left = self.and(step2, context.new_rvalue_from_long(typ, 0x0F0F0F0F));
let left = self.shl(left, context.new_rvalue_from_long(typ, 4));
let right = self.and(step2, context.new_rvalue_from_long(typ, 0xF0F0F0F0));
let right = self.lshr(right, context.new_rvalue_from_long(typ, 4));
let step3 = self.or(left, right);
// Fourth step.
let left = self.and(step3, context.new_rvalue_from_long(typ, 0x00FF00FF));
let left = self.shl(left, context.new_rvalue_from_long(typ, 8));
let right = self.and(step3, context.new_rvalue_from_long(typ, 0xFF00FF00));
let right = self.lshr(right, context.new_rvalue_from_long(typ, 8));
let step4 = self.or(left, right);
// Fifth step.
let left = self.and(step4, context.new_rvalue_from_long(typ, 0x0000FFFF));
let left = self.shl(left, context.new_rvalue_from_long(typ, 16));
let right = self.and(step4, context.new_rvalue_from_long(typ, 0xFFFF0000));
let right = self.lshr(right, context.new_rvalue_from_long(typ, 16));
let step5 = self.or(left, right);
step5
},
64 => {
// First step.
let left = self.shl(value, context.new_rvalue_from_long(typ, 32));
let right = self.lshr(value, context.new_rvalue_from_long(typ, 32));
let step1 = self.or(left, right);
// Second step.
let left = self.and(step1, context.new_rvalue_from_long(typ, 0x0001FFFF0001FFFF));
let left = self.shl(left, context.new_rvalue_from_long(typ, 15));
let right = self.and(step1, context.new_rvalue_from_long(typ, 0xFFFE0000FFFE0000u64 as i64)); // TODO(antoyo): transmute the number instead?
let right = self.lshr(right, context.new_rvalue_from_long(typ, 17));
let step2 = self.or(left, right);
// Third step.
let left = self.lshr(step2, context.new_rvalue_from_long(typ, 10));
let left = self.xor(step2, left);
let temp = self.and(left, context.new_rvalue_from_long(typ, 0x003F801F003F801F));
let left = self.shl(temp, context.new_rvalue_from_long(typ, 10));
let left = self.or(temp, left);
let step3 = self.xor(left, step2);
// Fourth step.
let left = self.lshr(step3, context.new_rvalue_from_long(typ, 4));
let left = self.xor(step3, left);
let temp = self.and(left, context.new_rvalue_from_long(typ, 0x0E0384210E038421));
let left = self.shl(temp, context.new_rvalue_from_long(typ, 4));
let left = self.or(temp, left);
let step4 = self.xor(left, step3);
// Fifth step.
let left = self.lshr(step4, context.new_rvalue_from_long(typ, 2));
let left = self.xor(step4, left);
let temp = self.and(left, context.new_rvalue_from_long(typ, 0x2248884222488842));
let left = self.shl(temp, context.new_rvalue_from_long(typ, 2));
let left = self.or(temp, left);
let step5 = self.xor(left, step4);
step5
},
128 => {
// TODO(antoyo): find a more efficient implementation?
let sixty_four = self.gcc_int(typ, 64);
let right_shift = self.gcc_lshr(value, sixty_four);
let high = self.gcc_int_cast(right_shift, self.u64_type);
let low = self.gcc_int_cast(value, self.u64_type);
let reversed_high = self.bit_reverse(64, high);
let reversed_low = self.bit_reverse(64, low);
let new_low = self.gcc_int_cast(reversed_high, typ);
let new_high = self.shl(self.gcc_int_cast(reversed_low, typ), sixty_four);
self.gcc_or(new_low, new_high)
},
_ => {
panic!("cannot bit reverse with width = {}", width);
},
};
self.gcc_int_cast(result, result_type)
}
fn count_leading_zeroes(&mut self, width: u64, arg: RValue<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): use width?
let arg_type = arg.get_type();
let count_leading_zeroes =
// TODO(antoyo): write a new function Type::is_compatible_with(&Type) and use it here
// instead of using is_uint().
if arg_type.is_uint(&self.cx) {
"__builtin_clz"
}
else if arg_type.is_ulong(&self.cx) {
"__builtin_clzl"
}
else if arg_type.is_ulonglong(&self.cx) {
"__builtin_clzll"
}
else if width == 128 {
// Algorithm from: https://stackoverflow.com/a/28433850/389119
let array_type = self.context.new_array_type(None, arg_type, 3);
let result = self.current_func()
.new_local(None, array_type, "count_loading_zeroes_results");
let sixty_four = self.const_uint(arg_type, 64);
let shift = self.lshr(arg, sixty_four);
let high = self.gcc_int_cast(shift, self.u64_type);
let low = self.gcc_int_cast(arg, self.u64_type);
let zero = self.context.new_rvalue_zero(self.usize_type);
let one = self.context.new_rvalue_one(self.usize_type);
let two = self.context.new_rvalue_from_long(self.usize_type, 2);
let clzll = self.context.get_builtin_function("__builtin_clzll");
let first_elem = self.context.new_array_access(None, result, zero);
let first_value = self.gcc_int_cast(self.context.new_call(None, clzll, &[high]), arg_type);
self.llbb()
.add_assignment(None, first_elem, first_value);
let second_elem = self.context.new_array_access(None, result, one);
let cast = self.gcc_int_cast(self.context.new_call(None, clzll, &[low]), arg_type);
let second_value = self.add(cast, sixty_four);
self.llbb()
.add_assignment(None, second_elem, second_value);
let third_elem = self.context.new_array_access(None, result, two);
let third_value = self.const_uint(arg_type, 128);
self.llbb()
.add_assignment(None, third_elem, third_value);
let not_high = self.context.new_unary_op(None, UnaryOp::LogicalNegate, self.u64_type, high);
let not_low = self.context.new_unary_op(None, UnaryOp::LogicalNegate, self.u64_type, low);
let not_low_and_not_high = not_low & not_high;
let index = not_high + not_low_and_not_high;
// NOTE: the following cast is necessary to avoid a GIMPLE verification failure in
// gcc.
// TODO(antoyo): do the correct verification in libgccjit to avoid an error at the
// compilation stage.
let index = self.context.new_cast(None, index, self.i32_type);
let res = self.context.new_array_access(None, result, index);
return self.gcc_int_cast(res.to_rvalue(), arg_type);
}
else {
let count_leading_zeroes = self.context.get_builtin_function("__builtin_clzll");
let arg = self.context.new_cast(None, arg, self.ulonglong_type);
let diff = self.ulonglong_type.get_size() as i64 - arg_type.get_size() as i64;
let diff = self.context.new_rvalue_from_long(self.int_type, diff * 8);
let res = self.context.new_call(None, count_leading_zeroes, &[arg]) - diff;
return self.context.new_cast(None, res, arg_type);
};
let count_leading_zeroes = self.context.get_builtin_function(count_leading_zeroes);
let res = self.context.new_call(None, count_leading_zeroes, &[arg]);
self.context.new_cast(None, res, arg_type)
}
fn count_trailing_zeroes(&mut self, _width: u64, arg: RValue<'gcc>) -> RValue<'gcc> {
let result_type = arg.get_type();
let arg =
if result_type.is_signed(self.cx) {
let new_type = result_type.to_unsigned(self.cx);
self.gcc_int_cast(arg, new_type)
}
else {
arg
};
let arg_type = arg.get_type();
let (count_trailing_zeroes, expected_type) =
// TODO(antoyo): write a new function Type::is_compatible_with(&Type) and use it here
// instead of using is_uint().
if arg_type.is_uchar(&self.cx) || arg_type.is_ushort(&self.cx) || arg_type.is_uint(&self.cx) {
// NOTE: we don't need to & 0xFF for uchar because the result is undefined on zero.
("__builtin_ctz", self.cx.uint_type)
}
else if arg_type.is_ulong(&self.cx) {
("__builtin_ctzl", self.cx.ulong_type)
}
else if arg_type.is_ulonglong(&self.cx) {
("__builtin_ctzll", self.cx.ulonglong_type)
}
else if arg_type.is_u128(&self.cx) {
// Adapted from the algorithm to count leading zeroes from: https://stackoverflow.com/a/28433850/389119
let array_type = self.context.new_array_type(None, arg_type, 3);
let result = self.current_func()
.new_local(None, array_type, "count_loading_zeroes_results");
let sixty_four = self.gcc_int(arg_type, 64);
let shift = self.gcc_lshr(arg, sixty_four);
let high = self.gcc_int_cast(shift, self.u64_type);
let low = self.gcc_int_cast(arg, self.u64_type);
let zero = self.context.new_rvalue_zero(self.usize_type);
let one = self.context.new_rvalue_one(self.usize_type);
let two = self.context.new_rvalue_from_long(self.usize_type, 2);
let ctzll = self.context.get_builtin_function("__builtin_ctzll");
let first_elem = self.context.new_array_access(None, result, zero);
let first_value = self.gcc_int_cast(self.context.new_call(None, ctzll, &[low]), arg_type);
self.llbb()
.add_assignment(None, first_elem, first_value);
let second_elem = self.context.new_array_access(None, result, one);
let second_value = self.gcc_add(self.gcc_int_cast(self.context.new_call(None, ctzll, &[high]), arg_type), sixty_four);
self.llbb()
.add_assignment(None, second_elem, second_value);
let third_elem = self.context.new_array_access(None, result, two);
let third_value = self.gcc_int(arg_type, 128);
self.llbb()
.add_assignment(None, third_elem, third_value);
let not_low = self.context.new_unary_op(None, UnaryOp::LogicalNegate, self.u64_type, low);
let not_high = self.context.new_unary_op(None, UnaryOp::LogicalNegate, self.u64_type, high);
let not_low_and_not_high = not_low & not_high;
let index = not_low + not_low_and_not_high;
// NOTE: the following cast is necessary to avoid a GIMPLE verification failure in
// gcc.
// TODO(antoyo): do the correct verification in libgccjit to avoid an error at the
// compilation stage.
let index = self.context.new_cast(None, index, self.i32_type);
let res = self.context.new_array_access(None, result, index);
return self.gcc_int_cast(res.to_rvalue(), result_type);
}
else {
let count_trailing_zeroes = self.context.get_builtin_function("__builtin_ctzll");
let arg_size = arg_type.get_size();
let casted_arg = self.context.new_cast(None, arg, self.ulonglong_type);
let byte_diff = self.ulonglong_type.get_size() as i64 - arg_size as i64;
let diff = self.context.new_rvalue_from_long(self.int_type, byte_diff * 8);
let mask = self.context.new_rvalue_from_long(arg_type, -1); // To get the value with all bits set.
let masked = mask & self.context.new_unary_op(None, UnaryOp::BitwiseNegate, arg_type, arg);
let cond = self.context.new_comparison(None, ComparisonOp::Equals, masked, mask);
let diff = diff * self.context.new_cast(None, cond, self.int_type);
let res = self.context.new_call(None, count_trailing_zeroes, &[casted_arg]) - diff;
return self.context.new_cast(None, res, result_type);
};
let count_trailing_zeroes = self.context.get_builtin_function(count_trailing_zeroes);
let arg =
if arg_type != expected_type {
self.context.new_cast(None, arg, expected_type)
}
else {
arg
};
let res = self.context.new_call(None, count_trailing_zeroes, &[arg]);
self.context.new_cast(None, res, result_type)
}
fn pop_count(&mut self, value: RValue<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): use the optimized version with fewer operations.
let result_type = value.get_type();
let value_type = result_type.to_unsigned(self.cx);
let value =
if result_type.is_signed(self.cx) {
self.gcc_int_cast(value, value_type)
}
else {
value
};
if value_type.is_u128(&self.cx) {
// TODO(antoyo): implement in the normal algorithm below to have a more efficient
// implementation (that does not require a call to __popcountdi2).
let popcount = self.context.get_builtin_function("__builtin_popcountll");
let sixty_four = self.gcc_int(value_type, 64);
let right_shift = self.gcc_lshr(value, sixty_four);
let high = self.gcc_int_cast(right_shift, self.cx.ulonglong_type);
let high = self.context.new_call(None, popcount, &[high]);
let low = self.gcc_int_cast(value, self.cx.ulonglong_type);
let low = self.context.new_call(None, popcount, &[low]);
let res = high + low;
return self.gcc_int_cast(res, result_type);
}
// First step.
let mask = self.context.new_rvalue_from_long(value_type, 0x5555555555555555);
let left = value & mask;
let shifted = value >> self.context.new_rvalue_from_int(value_type, 1);
let right = shifted & mask;
let value = left + right;
// Second step.
let mask = self.context.new_rvalue_from_long(value_type, 0x3333333333333333);
let left = value & mask;
let shifted = value >> self.context.new_rvalue_from_int(value_type, 2);
let right = shifted & mask;
let value = left + right;
// Third step.
let mask = self.context.new_rvalue_from_long(value_type, 0x0F0F0F0F0F0F0F0F);
let left = value & mask;
let shifted = value >> self.context.new_rvalue_from_int(value_type, 4);
let right = shifted & mask;
let value = left + right;
if value_type.is_u8(&self.cx) {
return self.context.new_cast(None, value, result_type);
}
// Fourth step.
let mask = self.context.new_rvalue_from_long(value_type, 0x00FF00FF00FF00FF);
let left = value & mask;
let shifted = value >> self.context.new_rvalue_from_int(value_type, 8);
let right = shifted & mask;
let value = left + right;
if value_type.is_u16(&self.cx) {
return self.context.new_cast(None, value, result_type);
}
// Fifth step.
let mask = self.context.new_rvalue_from_long(value_type, 0x0000FFFF0000FFFF);
let left = value & mask;
let shifted = value >> self.context.new_rvalue_from_int(value_type, 16);
let right = shifted & mask;
let value = left + right;
if value_type.is_u32(&self.cx) {
return self.context.new_cast(None, value, result_type);
}
// Sixth step.
let mask = self.context.new_rvalue_from_long(value_type, 0x00000000FFFFFFFF);
let left = value & mask;
let shifted = value >> self.context.new_rvalue_from_int(value_type, 32);
let right = shifted & mask;
let value = left + right;
self.context.new_cast(None, value, result_type)
}
// Algorithm from: https://blog.regehr.org/archives/1063
fn rotate_left(&mut self, value: RValue<'gcc>, shift: RValue<'gcc>, width: u64) -> RValue<'gcc> {
let max = self.const_uint(shift.get_type(), width);
let shift = self.urem(shift, max);
let lhs = self.shl(value, shift);
let result_neg = self.neg(shift);
let result_and =
self.and(
result_neg,
self.const_uint(shift.get_type(), width - 1),
);
let rhs = self.lshr(value, result_and);
self.or(lhs, rhs)
}
// Algorithm from: https://blog.regehr.org/archives/1063
fn rotate_right(&mut self, value: RValue<'gcc>, shift: RValue<'gcc>, width: u64) -> RValue<'gcc> {
let max = self.const_uint(shift.get_type(), width);
let shift = self.urem(shift, max);
let lhs = self.lshr(value, shift);
let result_neg = self.neg(shift);
let result_and =
self.and(
result_neg,
self.const_uint(shift.get_type(), width - 1),
);
let rhs = self.shl(value, result_and);
self.or(lhs, rhs)
}
fn saturating_add(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>, signed: bool, width: u64) -> RValue<'gcc> {
let result_type = lhs.get_type();
if signed {
// Based on algorithm from: https://stackoverflow.com/a/56531252/389119
let func = self.current_func.borrow().expect("func");
let res = func.new_local(None, result_type, "saturating_sum");
let supports_native_type = self.is_native_int_type(result_type);
let overflow =
if supports_native_type {
let func_name =
match width {
8 => "__builtin_add_overflow",
16 => "__builtin_add_overflow",
32 => "__builtin_sadd_overflow",
64 => "__builtin_saddll_overflow",
128 => "__builtin_add_overflow",
_ => unreachable!(),
};
let overflow_func = self.context.get_builtin_function(func_name);
self.overflow_call(overflow_func, &[lhs, rhs, res.get_address(None)], None)
}
else {
let func_name =
match width {
128 => "__rust_i128_addo",
_ => unreachable!(),
};
let param_a = self.context.new_parameter(None, result_type, "a");
let param_b = self.context.new_parameter(None, result_type, "b");
let result_field = self.context.new_field(None, result_type, "result");
let overflow_field = self.context.new_field(None, self.bool_type, "overflow");
let return_type = self.context.new_struct_type(None, "result_overflow", &[result_field, overflow_field]);
let func = self.context.new_function(None, FunctionType::Extern, return_type.as_type(), &[param_a, param_b], func_name, false);
let result = self.context.new_call(None, func, &[lhs, rhs]);
let overflow = result.access_field(None, overflow_field);
let int_result = result.access_field(None, result_field);
self.llbb().add_assignment(None, res, int_result);
overflow
};
let then_block = func.new_block("then");
let after_block = func.new_block("after");
// Return `result_type`'s maximum or minimum value on overflow
// NOTE: convert the type to unsigned to have an unsigned shift.
let unsigned_type = result_type.to_unsigned(&self.cx);
let shifted = self.gcc_lshr(self.gcc_int_cast(lhs, unsigned_type), self.gcc_int(unsigned_type, width as i64 - 1));
let uint_max = self.gcc_not(self.gcc_int(unsigned_type, 0));
let int_max = self.gcc_lshr(uint_max, self.gcc_int(unsigned_type, 1));
then_block.add_assignment(None, res, self.gcc_int_cast(self.gcc_add(shifted, int_max), result_type));
then_block.end_with_jump(None, after_block);
self.llbb().end_with_conditional(None, overflow, then_block, after_block);
// NOTE: since jumps were added in a place rustc does not
// expect, the current block in the state need to be updated.
self.switch_to_block(after_block);
res.to_rvalue()
}
else {
// Algorithm from: http://locklessinc.com/articles/sat_arithmetic/
let res = self.gcc_add(lhs, rhs);
let cond = self.gcc_icmp(IntPredicate::IntULT, res, lhs);
let value = self.gcc_neg(self.gcc_int_cast(cond, result_type));
self.gcc_or(res, value)
}
}
// Algorithm from: https://locklessinc.com/articles/sat_arithmetic/
fn saturating_sub(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>, signed: bool, width: u64) -> RValue<'gcc> {
let result_type = lhs.get_type();
if signed {
// Based on algorithm from: https://stackoverflow.com/a/56531252/389119
let func = self.current_func.borrow().expect("func");
let res = func.new_local(None, result_type, "saturating_diff");
let supports_native_type = self.is_native_int_type(result_type);
let overflow =
if supports_native_type {
let func_name =
match width {
8 => "__builtin_sub_overflow",
16 => "__builtin_sub_overflow",
32 => "__builtin_ssub_overflow",
64 => "__builtin_ssubll_overflow",
128 => "__builtin_sub_overflow",
_ => unreachable!(),
};
let overflow_func = self.context.get_builtin_function(func_name);
self.overflow_call(overflow_func, &[lhs, rhs, res.get_address(None)], None)
}
else {
let func_name =
match width {
128 => "__rust_i128_subo",
_ => unreachable!(),
};
let param_a = self.context.new_parameter(None, result_type, "a");
let param_b = self.context.new_parameter(None, result_type, "b");
let result_field = self.context.new_field(None, result_type, "result");
let overflow_field = self.context.new_field(None, self.bool_type, "overflow");
let return_type = self.context.new_struct_type(None, "result_overflow", &[result_field, overflow_field]);
let func = self.context.new_function(None, FunctionType::Extern, return_type.as_type(), &[param_a, param_b], func_name, false);
let result = self.context.new_call(None, func, &[lhs, rhs]);
let overflow = result.access_field(None, overflow_field);
let int_result = result.access_field(None, result_field);
self.llbb().add_assignment(None, res, int_result);
overflow
};
let then_block = func.new_block("then");
let after_block = func.new_block("after");
// Return `result_type`'s maximum or minimum value on overflow
// NOTE: convert the type to unsigned to have an unsigned shift.
let unsigned_type = result_type.to_unsigned(&self.cx);
let shifted = self.gcc_lshr(self.gcc_int_cast(lhs, unsigned_type), self.gcc_int(unsigned_type, width as i64 - 1));
let uint_max = self.gcc_not(self.gcc_int(unsigned_type, 0));
let int_max = self.gcc_lshr(uint_max, self.gcc_int(unsigned_type, 1));
then_block.add_assignment(None, res, self.gcc_int_cast(self.gcc_add(shifted, int_max), result_type));
then_block.end_with_jump(None, after_block);
self.llbb().end_with_conditional(None, overflow, then_block, after_block);
// NOTE: since jumps were added in a place rustc does not
// expect, the current block in the state need to be updated.
self.switch_to_block(after_block);
res.to_rvalue()
}
else {
let res = self.gcc_sub(lhs, rhs);
let comparison = self.gcc_icmp(IntPredicate::IntULE, res, lhs);
let value = self.gcc_neg(self.gcc_int_cast(comparison, result_type));
self.gcc_and(res, value)
}
}
}
fn try_intrinsic<'gcc, 'tcx>(bx: &mut Builder<'_, 'gcc, 'tcx>, try_func: RValue<'gcc>, data: RValue<'gcc>, _catch_func: RValue<'gcc>, dest: RValue<'gcc>) {
// NOTE: the `|| true` here is to use the panic=abort strategy with panic=unwind too
if bx.sess().panic_strategy() == PanicStrategy::Abort || true {
// TODO(bjorn3): Properly implement unwinding and remove the `|| true` once this is done.
bx.call(bx.type_void(), try_func, &[data], None);
// Return 0 unconditionally from the intrinsic call;
// we can never unwind.
let ret_align = bx.tcx.data_layout.i32_align.abi;
bx.store(bx.const_i32(0), dest, ret_align);
}
else if wants_msvc_seh(bx.sess()) {
unimplemented!();
}
else {
unimplemented!();
}
}
|