summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_codegen_gcc/src/type_of.rs
blob: ea2ce765053ffb83318e664f28ea5b20aebdb645 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
use std::fmt::Write;

use gccjit::{Struct, Type};
use crate::rustc_codegen_ssa::traits::{BaseTypeMethods, DerivedTypeMethods, LayoutTypeMethods};
use rustc_middle::bug;
use rustc_middle::ty::{self, Ty, TypeVisitableExt};
use rustc_middle::ty::layout::{FnAbiOf, LayoutOf, TyAndLayout};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_target::abi::{self, Abi, F32, F64, FieldsShape, Int, Integer, Pointer, PointeeInfo, Size, TyAbiInterface, Variants};
use rustc_target::abi::call::{CastTarget, FnAbi, Reg};

use crate::abi::{FnAbiGccExt, GccType};
use crate::context::CodegenCx;
use crate::type_::struct_fields;

impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
    fn type_from_unsigned_integer(&self, i: Integer) -> Type<'gcc> {
        use Integer::*;
        match i {
            I8 => self.type_u8(),
            I16 => self.type_u16(),
            I32 => self.type_u32(),
            I64 => self.type_u64(),
            I128 => self.type_u128(),
        }
    }

    #[cfg(feature="master")]
    pub fn type_int_from_ty(&self, t: ty::IntTy) -> Type<'gcc> {
        match t {
            ty::IntTy::Isize => self.type_isize(),
            ty::IntTy::I8 => self.type_i8(),
            ty::IntTy::I16 => self.type_i16(),
            ty::IntTy::I32 => self.type_i32(),
            ty::IntTy::I64 => self.type_i64(),
            ty::IntTy::I128 => self.type_i128(),
        }
    }

    #[cfg(feature="master")]
    pub fn type_uint_from_ty(&self, t: ty::UintTy) -> Type<'gcc> {
        match t {
            ty::UintTy::Usize => self.type_isize(),
            ty::UintTy::U8 => self.type_i8(),
            ty::UintTy::U16 => self.type_i16(),
            ty::UintTy::U32 => self.type_i32(),
            ty::UintTy::U64 => self.type_i64(),
            ty::UintTy::U128 => self.type_i128(),
        }
    }
}

pub fn uncached_gcc_type<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, layout: TyAndLayout<'tcx>, defer: &mut Option<(Struct<'gcc>, TyAndLayout<'tcx>)>) -> Type<'gcc> {
    match layout.abi {
        Abi::Scalar(_) => bug!("handled elsewhere"),
        Abi::Vector { ref element, count } => {
            let element = layout.scalar_gcc_type_at(cx, element, Size::ZERO);
            return cx.context.new_vector_type(element, count);
        },
        Abi::ScalarPair(..) => {
            return cx.type_struct(
                &[
                    layout.scalar_pair_element_gcc_type(cx, 0, false),
                    layout.scalar_pair_element_gcc_type(cx, 1, false),
                ],
                false,
            );
        }
        Abi::Uninhabited | Abi::Aggregate { .. } => {}
    }

    let name = match layout.ty.kind() {
        // FIXME(eddyb) producing readable type names for trait objects can result
        // in problematically distinct types due to HRTB and subtyping (see #47638).
        // ty::Dynamic(..) |
        ty::Adt(..) | ty::Closure(..) | ty::Foreign(..) | ty::Generator(..) | ty::Str
            if !cx.sess().fewer_names() =>
        {
            let mut name = with_no_trimmed_paths!(layout.ty.to_string());
            if let (&ty::Adt(def, _), &Variants::Single { index }) =
                (layout.ty.kind(), &layout.variants)
            {
                if def.is_enum() && !def.variants().is_empty() {
                    write!(&mut name, "::{}", def.variant(index).name).unwrap();
                }
            }
            if let (&ty::Generator(_, _, _), &Variants::Single { index }) =
                (layout.ty.kind(), &layout.variants)
            {
                write!(&mut name, "::{}", ty::GeneratorSubsts::variant_name(index)).unwrap();
            }
            Some(name)
        }
        ty::Adt(..) => {
            // If `Some` is returned then a named struct is created in LLVM. Name collisions are
            // avoided by LLVM (with increasing suffixes). If rustc doesn't generate names then that
            // can improve perf.
            // FIXME(antoyo): I don't think that's true for libgccjit.
            Some(String::new())
        }
        _ => None,
    };

    match layout.fields {
        FieldsShape::Primitive | FieldsShape::Union(_) => {
            let fill = cx.type_padding_filler(layout.size, layout.align.abi);
            let packed = false;
            match name {
                None => cx.type_struct(&[fill], packed),
                Some(ref name) => {
                    let gcc_type = cx.type_named_struct(name);
                    cx.set_struct_body(gcc_type, &[fill], packed);
                    gcc_type.as_type()
                },
            }
        }
        FieldsShape::Array { count, .. } => cx.type_array(layout.field(cx, 0).gcc_type(cx, true), count),
        FieldsShape::Arbitrary { .. } =>
            match name {
                None => {
                    let (gcc_fields, packed) = struct_fields(cx, layout);
                    cx.type_struct(&gcc_fields, packed)
                },
                Some(ref name) => {
                    let gcc_type = cx.type_named_struct(name);
                    *defer = Some((gcc_type, layout));
                    gcc_type.as_type()
                },
            },
    }
}

pub trait LayoutGccExt<'tcx> {
    fn is_gcc_immediate(&self) -> bool;
    fn is_gcc_scalar_pair(&self) -> bool;
    fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, set_fields: bool) -> Type<'gcc>;
    fn immediate_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
    fn scalar_gcc_type_at<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, scalar: &abi::Scalar, offset: Size) -> Type<'gcc>;
    fn scalar_pair_element_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, index: usize, immediate: bool) -> Type<'gcc>;
    fn gcc_field_index(&self, index: usize) -> u64;
    fn pointee_info_at<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, offset: Size) -> Option<PointeeInfo>;
}

impl<'tcx> LayoutGccExt<'tcx> for TyAndLayout<'tcx> {
    fn is_gcc_immediate(&self) -> bool {
        match self.abi {
            Abi::Scalar(_) | Abi::Vector { .. } => true,
            Abi::ScalarPair(..) => false,
            Abi::Uninhabited | Abi::Aggregate { .. } => self.is_zst(),
        }
    }

    fn is_gcc_scalar_pair(&self) -> bool {
        match self.abi {
            Abi::ScalarPair(..) => true,
            Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } | Abi::Aggregate { .. } => false,
        }
    }

    /// Gets the GCC type corresponding to a Rust type, i.e., `rustc_middle::ty::Ty`.
    /// The pointee type of the pointer in `PlaceRef` is always this type.
    /// For sized types, it is also the right LLVM type for an `alloca`
    /// containing a value of that type, and most immediates (except `bool`).
    /// Unsized types, however, are represented by a "minimal unit", e.g.
    /// `[T]` becomes `T`, while `str` and `Trait` turn into `i8` - this
    /// is useful for indexing slices, as `&[T]`'s data pointer is `T*`.
    /// If the type is an unsized struct, the regular layout is generated,
    /// with the inner-most trailing unsized field using the "minimal unit"
    /// of that field's type - this is useful for taking the address of
    /// that field and ensuring the struct has the right alignment.
    //TODO(antoyo): do we still need the set_fields parameter?
    fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, set_fields: bool) -> Type<'gcc> {
        if let Abi::Scalar(ref scalar) = self.abi {
            // Use a different cache for scalars because pointers to DSTs
            // can be either fat or thin (data pointers of fat pointers).
            if let Some(&ty) = cx.scalar_types.borrow().get(&self.ty) {
                return ty;
            }
            let ty =
                match *self.ty.kind() {
                    ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
                        cx.type_ptr_to(cx.layout_of(ty).gcc_type(cx, set_fields))
                    }
                    ty::Adt(def, _) if def.is_box() => {
                        cx.type_ptr_to(cx.layout_of(self.ty.boxed_ty()).gcc_type(cx, true))
                    }
                    ty::FnPtr(sig) => cx.fn_ptr_backend_type(&cx.fn_abi_of_fn_ptr(sig, ty::List::empty())),
                    _ => self.scalar_gcc_type_at(cx, scalar, Size::ZERO),
                };
            cx.scalar_types.borrow_mut().insert(self.ty, ty);
            return ty;
        }

        // Check the cache.
        let variant_index =
            match self.variants {
                Variants::Single { index } => Some(index),
                _ => None,
            };
        let cached_type = cx.types.borrow().get(&(self.ty, variant_index)).cloned();
        if let Some(ty) = cached_type {
            let type_to_set_fields = cx.types_with_fields_to_set.borrow_mut().remove(&ty);
            if let Some((struct_type, layout)) = type_to_set_fields {
                // Since we might be trying to generate a type containing another type which is not
                // completely generated yet, we deferred setting the fields until now.
                let (fields, packed) = struct_fields(cx, layout);
                cx.set_struct_body(struct_type, &fields, packed);
            }
            return ty;
        }

        assert!(!self.ty.has_escaping_bound_vars(), "{:?} has escaping bound vars", self.ty);

        // Make sure lifetimes are erased, to avoid generating distinct LLVM
        // types for Rust types that only differ in the choice of lifetimes.
        let normal_ty = cx.tcx.erase_regions(self.ty);

        let mut defer = None;
        let ty =
            if self.ty != normal_ty {
                let mut layout = cx.layout_of(normal_ty);
                if let Some(v) = variant_index {
                    layout = layout.for_variant(cx, v);
                }
                layout.gcc_type(cx, true)
            }
            else {
                uncached_gcc_type(cx, *self, &mut defer)
            };

        cx.types.borrow_mut().insert((self.ty, variant_index), ty);

        if let Some((ty, layout)) = defer {
            let (fields, packed) = struct_fields(cx, layout);
            cx.set_struct_body(ty, &fields, packed);
        }

        ty
    }

    fn immediate_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
        if let Abi::Scalar(ref scalar) = self.abi {
            if scalar.is_bool() {
                return cx.type_i1();
            }
        }
        self.gcc_type(cx, true)
    }

    fn scalar_gcc_type_at<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, scalar: &abi::Scalar, offset: Size) -> Type<'gcc> {
        match scalar.primitive() {
            Int(i, true) => cx.type_from_integer(i),
            Int(i, false) => cx.type_from_unsigned_integer(i),
            F32 => cx.type_f32(),
            F64 => cx.type_f64(),
            Pointer(address_space) => {
                // If we know the alignment, pick something better than i8.
                let pointee =
                    if let Some(pointee) = self.pointee_info_at(cx, offset) {
                        cx.type_pointee_for_align(pointee.align)
                    }
                    else {
                        cx.type_i8()
                    };
                cx.type_ptr_to_ext(pointee, address_space)
            }
        }
    }

    fn scalar_pair_element_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, index: usize, immediate: bool) -> Type<'gcc> {
        // TODO(antoyo): remove llvm hack:
        // HACK(eddyb) special-case fat pointers until LLVM removes
        // pointee types, to avoid bitcasting every `OperandRef::deref`.
        match self.ty.kind() {
            ty::Ref(..) | ty::RawPtr(_) => {
                return self.field(cx, index).gcc_type(cx, true);
            }
            // only wide pointer boxes are handled as pointers
            // thin pointer boxes with scalar allocators are handled by the general logic below
            ty::Adt(def, substs) if def.is_box() && cx.layout_of(substs.type_at(1)).is_zst() => {
                let ptr_ty = cx.tcx.mk_mut_ptr(self.ty.boxed_ty());
                return cx.layout_of(ptr_ty).scalar_pair_element_gcc_type(cx, index, immediate);
            }
            _ => {}
        }

        let (a, b) = match self.abi {
            Abi::ScalarPair(ref a, ref b) => (a, b),
            _ => bug!("TyAndLayout::scalar_pair_element_llty({:?}): not applicable", self),
        };
        let scalar = [a, b][index];

        // Make sure to return the same type `immediate_gcc_type` would when
        // dealing with an immediate pair.  This means that `(bool, bool)` is
        // effectively represented as `{i8, i8}` in memory and two `i1`s as an
        // immediate, just like `bool` is typically `i8` in memory and only `i1`
        // when immediate.  We need to load/store `bool` as `i8` to avoid
        // crippling LLVM optimizations or triggering other LLVM bugs with `i1`.
        // TODO(antoyo): this bugs certainly don't happen in this case since the bool type is used instead of i1.
        if scalar.is_bool() {
            return cx.type_i1();
        }

        let offset =
            if index == 0 {
                Size::ZERO
            }
            else {
                a.size(cx).align_to(b.align(cx).abi)
            };
        self.scalar_gcc_type_at(cx, scalar, offset)
    }

    fn gcc_field_index(&self, index: usize) -> u64 {
        match self.abi {
            Abi::Scalar(_) | Abi::ScalarPair(..) => {
                bug!("TyAndLayout::gcc_field_index({:?}): not applicable", self)
            }
            _ => {}
        }
        match self.fields {
            FieldsShape::Primitive | FieldsShape::Union(_) => {
                bug!("TyAndLayout::gcc_field_index({:?}): not applicable", self)
            }

            FieldsShape::Array { .. } => index as u64,

            FieldsShape::Arbitrary { .. } => 1 + (self.fields.memory_index(index) as u64) * 2,
        }
    }

    fn pointee_info_at<'a>(&self, cx: &CodegenCx<'a, 'tcx>, offset: Size) -> Option<PointeeInfo> {
        if let Some(&pointee) = cx.pointee_infos.borrow().get(&(self.ty, offset)) {
            return pointee;
        }

        let result = Ty::ty_and_layout_pointee_info_at(*self, cx, offset);

        cx.pointee_infos.borrow_mut().insert((self.ty, offset), result);
        result
    }
}

impl<'gcc, 'tcx> LayoutTypeMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
    fn backend_type(&self, layout: TyAndLayout<'tcx>) -> Type<'gcc> {
        layout.gcc_type(self, true)
    }

    fn immediate_backend_type(&self, layout: TyAndLayout<'tcx>) -> Type<'gcc> {
        layout.immediate_gcc_type(self)
    }

    fn is_backend_immediate(&self, layout: TyAndLayout<'tcx>) -> bool {
        layout.is_gcc_immediate()
    }

    fn is_backend_scalar_pair(&self, layout: TyAndLayout<'tcx>) -> bool {
        layout.is_gcc_scalar_pair()
    }

    fn backend_field_index(&self, layout: TyAndLayout<'tcx>, index: usize) -> u64 {
        layout.gcc_field_index(index)
    }

    fn scalar_pair_element_backend_type(&self, layout: TyAndLayout<'tcx>, index: usize, immediate: bool) -> Type<'gcc> {
        layout.scalar_pair_element_gcc_type(self, index, immediate)
    }

    fn cast_backend_type(&self, ty: &CastTarget) -> Type<'gcc> {
        ty.gcc_type(self)
    }

    fn fn_ptr_backend_type(&self, fn_abi: &FnAbi<'tcx, Ty<'tcx>>) -> Type<'gcc> {
        fn_abi.ptr_to_gcc_type(self)
    }

    fn reg_backend_type(&self, _ty: &Reg) -> Type<'gcc> {
        unimplemented!();
    }

    fn fn_decl_backend_type(&self, _fn_abi: &FnAbi<'tcx, Ty<'tcx>>) -> Type<'gcc> {
        // FIXME(antoyo): return correct type.
        self.type_void()
    }
}