1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
#![allow(non_camel_case_types)]
use rustc_hir::LangItem;
use rustc_middle::mir::interpret::ConstValue;
use rustc_middle::ty::{self, layout::TyAndLayout, Ty, TyCtxt};
use rustc_span::Span;
use crate::base;
use crate::traits::*;
#[derive(Copy, Clone)]
pub enum IntPredicate {
IntEQ,
IntNE,
IntUGT,
IntUGE,
IntULT,
IntULE,
IntSGT,
IntSGE,
IntSLT,
IntSLE,
}
#[derive(Copy, Clone)]
pub enum RealPredicate {
RealPredicateFalse,
RealOEQ,
RealOGT,
RealOGE,
RealOLT,
RealOLE,
RealONE,
RealORD,
RealUNO,
RealUEQ,
RealUGT,
RealUGE,
RealULT,
RealULE,
RealUNE,
RealPredicateTrue,
}
#[derive(Copy, Clone)]
pub enum AtomicRmwBinOp {
AtomicXchg,
AtomicAdd,
AtomicSub,
AtomicAnd,
AtomicNand,
AtomicOr,
AtomicXor,
AtomicMax,
AtomicMin,
AtomicUMax,
AtomicUMin,
}
#[derive(Copy, Clone)]
pub enum AtomicOrdering {
Unordered,
Relaxed,
Acquire,
Release,
AcquireRelease,
SequentiallyConsistent,
}
#[derive(Copy, Clone)]
pub enum SynchronizationScope {
SingleThread,
CrossThread,
}
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum TypeKind {
Void,
Half,
Float,
Double,
X86_FP80,
FP128,
PPC_FP128,
Label,
Integer,
Function,
Struct,
Array,
Pointer,
Vector,
Metadata,
X86_MMX,
Token,
ScalableVector,
BFloat,
X86_AMX,
}
// FIXME(mw): Anything that is produced via DepGraph::with_task() must implement
// the HashStable trait. Normally DepGraph::with_task() calls are
// hidden behind queries, but CGU creation is a special case in two
// ways: (1) it's not a query and (2) CGU are output nodes, so their
// Fingerprints are not actually needed. It remains to be clarified
// how exactly this case will be handled in the red/green system but
// for now we content ourselves with providing a no-op HashStable
// implementation for CGUs.
mod temp_stable_hash_impls {
use crate::ModuleCodegen;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
impl<HCX, M> HashStable<HCX> for ModuleCodegen<M> {
fn hash_stable(&self, _: &mut HCX, _: &mut StableHasher) {
// do nothing
}
}
}
pub fn build_langcall<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &Bx,
span: Option<Span>,
li: LangItem,
) -> (Bx::FnAbiOfResult, Bx::Value) {
let tcx = bx.tcx();
let def_id = tcx.require_lang_item(li, span);
let instance = ty::Instance::mono(tcx, def_id);
(bx.fn_abi_of_instance(instance, ty::List::empty()), bx.get_fn_addr(instance))
}
// To avoid UB from LLVM, these two functions mask RHS with an
// appropriate mask unconditionally (i.e., the fallback behavior for
// all shifts). For 32- and 64-bit types, this matches the semantics
// of Java. (See related discussion on #1877 and #10183.)
pub fn build_unchecked_lshift<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &mut Bx,
lhs: Bx::Value,
rhs: Bx::Value,
) -> Bx::Value {
let rhs = base::cast_shift_expr_rhs(bx, lhs, rhs);
// #1877, #10183: Ensure that input is always valid
let rhs = shift_mask_rhs(bx, rhs);
bx.shl(lhs, rhs)
}
pub fn build_unchecked_rshift<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &mut Bx,
lhs_t: Ty<'tcx>,
lhs: Bx::Value,
rhs: Bx::Value,
) -> Bx::Value {
let rhs = base::cast_shift_expr_rhs(bx, lhs, rhs);
// #1877, #10183: Ensure that input is always valid
let rhs = shift_mask_rhs(bx, rhs);
let is_signed = lhs_t.is_signed();
if is_signed { bx.ashr(lhs, rhs) } else { bx.lshr(lhs, rhs) }
}
fn shift_mask_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &mut Bx,
rhs: Bx::Value,
) -> Bx::Value {
let rhs_llty = bx.val_ty(rhs);
let shift_val = shift_mask_val(bx, rhs_llty, rhs_llty, false);
bx.and(rhs, shift_val)
}
pub fn shift_mask_val<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &mut Bx,
llty: Bx::Type,
mask_llty: Bx::Type,
invert: bool,
) -> Bx::Value {
let kind = bx.type_kind(llty);
match kind {
TypeKind::Integer => {
// i8/u8 can shift by at most 7, i16/u16 by at most 15, etc.
let val = bx.int_width(llty) - 1;
if invert {
bx.const_int(mask_llty, !val as i64)
} else {
bx.const_uint(mask_llty, val)
}
}
TypeKind::Vector => {
let mask =
shift_mask_val(bx, bx.element_type(llty), bx.element_type(mask_llty), invert);
bx.vector_splat(bx.vector_length(mask_llty), mask)
}
_ => bug!("shift_mask_val: expected Integer or Vector, found {:?}", kind),
}
}
pub fn asm_const_to_str<'tcx>(
tcx: TyCtxt<'tcx>,
sp: Span,
const_value: ConstValue<'tcx>,
ty_and_layout: TyAndLayout<'tcx>,
) -> String {
let ConstValue::Scalar(scalar) = const_value else {
span_bug!(sp, "expected Scalar for promoted asm const, but got {:#?}", const_value)
};
let value = scalar.assert_bits(ty_and_layout.size);
match ty_and_layout.ty.kind() {
ty::Uint(_) => value.to_string(),
ty::Int(int_ty) => match int_ty.normalize(tcx.sess.target.pointer_width) {
ty::IntTy::I8 => (value as i8).to_string(),
ty::IntTy::I16 => (value as i16).to_string(),
ty::IntTy::I32 => (value as i32).to_string(),
ty::IntTy::I64 => (value as i64).to_string(),
ty::IntTy::I128 => (value as i128).to_string(),
ty::IntTy::Isize => unreachable!(),
},
_ => span_bug!(sp, "asm const has bad type {}", ty_and_layout.ty),
}
}
|