summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_const_eval/src/interpret/terminator.rs
blob: da320cd1cd5f0c6444b1ce8a8d56fffe2e776c78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
use std::borrow::Cow;

use rustc_ast::ast::InlineAsmOptions;
use rustc_middle::ty::layout::{FnAbiOf, LayoutOf};
use rustc_middle::ty::Instance;
use rustc_middle::{
    mir,
    ty::{self, Ty},
};
use rustc_target::abi;
use rustc_target::abi::call::{ArgAbi, ArgAttribute, ArgAttributes, FnAbi, PassMode};
use rustc_target::spec::abi::Abi;

use super::{
    FnVal, ImmTy, Immediate, InterpCx, InterpResult, MPlaceTy, Machine, MemoryKind, OpTy, Operand,
    PlaceTy, Scalar, StackPopCleanup, StackPopUnwind,
};

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
    pub(super) fn eval_terminator(
        &mut self,
        terminator: &mir::Terminator<'tcx>,
    ) -> InterpResult<'tcx> {
        use rustc_middle::mir::TerminatorKind::*;
        match terminator.kind {
            Return => {
                self.pop_stack_frame(/* unwinding */ false)?
            }

            Goto { target } => self.go_to_block(target),

            SwitchInt { ref discr, ref targets } => {
                let discr = self.read_immediate(&self.eval_operand(discr, None)?)?;
                trace!("SwitchInt({:?})", *discr);

                // Branch to the `otherwise` case by default, if no match is found.
                let mut target_block = targets.otherwise();

                for (const_int, target) in targets.iter() {
                    // Compare using MIR BinOp::Eq, to also support pointer values.
                    // (Avoiding `self.binary_op` as that does some redundant layout computation.)
                    let res = self
                        .overflowing_binary_op(
                            mir::BinOp::Eq,
                            &discr,
                            &ImmTy::from_uint(const_int, discr.layout),
                        )?
                        .0;
                    if res.to_bool()? {
                        target_block = target;
                        break;
                    }
                }

                self.go_to_block(target_block);
            }

            Call {
                ref func,
                ref args,
                destination,
                target,
                ref cleanup,
                from_hir_call: _,
                fn_span: _,
            } => {
                let old_stack = self.frame_idx();
                let old_loc = self.frame().loc;
                let func = self.eval_operand(func, None)?;
                let args = self.eval_operands(args)?;

                let fn_sig_binder = func.layout.ty.fn_sig(*self.tcx);
                let fn_sig =
                    self.tcx.normalize_erasing_late_bound_regions(self.param_env, fn_sig_binder);
                let extra_args = &args[fn_sig.inputs().len()..];
                let extra_args = self.tcx.mk_type_list(extra_args.iter().map(|arg| arg.layout.ty));

                let (fn_val, fn_abi, with_caller_location) = match *func.layout.ty.kind() {
                    ty::FnPtr(_sig) => {
                        let fn_ptr = self.read_pointer(&func)?;
                        let fn_val = self.get_ptr_fn(fn_ptr)?;
                        (fn_val, self.fn_abi_of_fn_ptr(fn_sig_binder, extra_args)?, false)
                    }
                    ty::FnDef(def_id, substs) => {
                        let instance =
                            self.resolve(ty::WithOptConstParam::unknown(def_id), substs)?;
                        (
                            FnVal::Instance(instance),
                            self.fn_abi_of_instance(instance, extra_args)?,
                            instance.def.requires_caller_location(*self.tcx),
                        )
                    }
                    _ => span_bug!(
                        terminator.source_info.span,
                        "invalid callee of type {:?}",
                        func.layout.ty
                    ),
                };

                let destination = self.eval_place(destination)?;
                self.eval_fn_call(
                    fn_val,
                    (fn_sig.abi, fn_abi),
                    &args,
                    with_caller_location,
                    &destination,
                    target,
                    match (cleanup, fn_abi.can_unwind) {
                        (Some(cleanup), true) => StackPopUnwind::Cleanup(*cleanup),
                        (None, true) => StackPopUnwind::Skip,
                        (_, false) => StackPopUnwind::NotAllowed,
                    },
                )?;
                // Sanity-check that `eval_fn_call` either pushed a new frame or
                // did a jump to another block.
                if self.frame_idx() == old_stack && self.frame().loc == old_loc {
                    span_bug!(terminator.source_info.span, "evaluating this call made no progress");
                }
            }

            Drop { place, target, unwind } => {
                let frame = self.frame();
                let ty = place.ty(&frame.body.local_decls, *self.tcx).ty;
                let ty = self.subst_from_frame_and_normalize_erasing_regions(frame, ty)?;
                let instance = Instance::resolve_drop_in_place(*self.tcx, ty);
                if let ty::InstanceDef::DropGlue(_, None) = instance.def {
                    // This is the branch we enter if and only if the dropped type has no drop glue
                    // whatsoever. This can happen as a result of monomorphizing a drop of a
                    // generic. In order to make sure that generic and non-generic code behaves
                    // roughly the same (and in keeping with Mir semantics) we do nothing here.
                    self.go_to_block(target);
                    return Ok(());
                }
                let place = self.eval_place(place)?;
                trace!("TerminatorKind::drop: {:?}, type {}", place, ty);
                self.drop_in_place(&place, instance, target, unwind)?;
            }

            Assert { ref cond, expected, ref msg, target, cleanup } => {
                let cond_val = self.read_scalar(&self.eval_operand(cond, None)?)?.to_bool()?;
                if expected == cond_val {
                    self.go_to_block(target);
                } else {
                    M::assert_panic(self, msg, cleanup)?;
                }
            }

            Abort => {
                M::abort(self, "the program aborted execution".to_owned())?;
            }

            // When we encounter Resume, we've finished unwinding
            // cleanup for the current stack frame. We pop it in order
            // to continue unwinding the next frame
            Resume => {
                trace!("unwinding: resuming from cleanup");
                // By definition, a Resume terminator means
                // that we're unwinding
                self.pop_stack_frame(/* unwinding */ true)?;
                return Ok(());
            }

            // It is UB to ever encounter this.
            Unreachable => throw_ub!(Unreachable),

            // These should never occur for MIR we actually run.
            DropAndReplace { .. }
            | FalseEdge { .. }
            | FalseUnwind { .. }
            | Yield { .. }
            | GeneratorDrop => span_bug!(
                terminator.source_info.span,
                "{:#?} should have been eliminated by MIR pass",
                terminator.kind
            ),

            InlineAsm { template, ref operands, options, destination, .. } => {
                M::eval_inline_asm(self, template, operands, options)?;
                if options.contains(InlineAsmOptions::NORETURN) {
                    throw_ub_format!("returned from noreturn inline assembly");
                }
                self.go_to_block(
                    destination
                        .expect("InlineAsm terminators without noreturn must have a destination"),
                )
            }
        }

        Ok(())
    }

    fn check_argument_compat(
        caller_abi: &ArgAbi<'tcx, Ty<'tcx>>,
        callee_abi: &ArgAbi<'tcx, Ty<'tcx>>,
    ) -> bool {
        // Heuristic for type comparison.
        let layout_compat = || {
            if caller_abi.layout.ty == callee_abi.layout.ty {
                // No question
                return true;
            }
            if caller_abi.layout.is_unsized() || callee_abi.layout.is_unsized() {
                // No, no, no. We require the types to *exactly* match for unsized arguments. If
                // these are somehow unsized "in a different way" (say, `dyn Trait` vs `[i32]`),
                // then who knows what happens.
                return false;
            }
            if caller_abi.layout.size != callee_abi.layout.size
                || caller_abi.layout.align.abi != callee_abi.layout.align.abi
            {
                // This cannot go well...
                return false;
            }
            // The rest *should* be okay, but we are extra conservative.
            match (caller_abi.layout.abi, callee_abi.layout.abi) {
                // Different valid ranges are okay (once we enforce validity,
                // that will take care to make it UB to leave the range, just
                // like for transmute).
                (abi::Abi::Scalar(caller), abi::Abi::Scalar(callee)) => {
                    caller.primitive() == callee.primitive()
                }
                (
                    abi::Abi::ScalarPair(caller1, caller2),
                    abi::Abi::ScalarPair(callee1, callee2),
                ) => {
                    caller1.primitive() == callee1.primitive()
                        && caller2.primitive() == callee2.primitive()
                }
                // Be conservative
                _ => false,
            }
        };
        // When comparing the PassMode, we have to be smart about comparing the attributes.
        let arg_attr_compat = |a1: &ArgAttributes, a2: &ArgAttributes| {
            // There's only one regular attribute that matters for the call ABI: InReg.
            // Everything else is things like noalias, dereferenceable, nonnull, ...
            // (This also applies to pointee_size, pointee_align.)
            if a1.regular.contains(ArgAttribute::InReg) != a2.regular.contains(ArgAttribute::InReg)
            {
                return false;
            }
            // We also compare the sign extension mode -- this could let the callee make assumptions
            // about bits that conceptually were not even passed.
            if a1.arg_ext != a2.arg_ext {
                return false;
            }
            return true;
        };
        let mode_compat = || match (&caller_abi.mode, &callee_abi.mode) {
            (PassMode::Ignore, PassMode::Ignore) => true,
            (PassMode::Direct(a1), PassMode::Direct(a2)) => arg_attr_compat(a1, a2),
            (PassMode::Pair(a1, b1), PassMode::Pair(a2, b2)) => {
                arg_attr_compat(a1, a2) && arg_attr_compat(b1, b2)
            }
            (PassMode::Cast(c1, pad1), PassMode::Cast(c2, pad2)) => c1 == c2 && pad1 == pad2,
            (
                PassMode::Indirect { attrs: a1, extra_attrs: None, on_stack: s1 },
                PassMode::Indirect { attrs: a2, extra_attrs: None, on_stack: s2 },
            ) => arg_attr_compat(a1, a2) && s1 == s2,
            (
                PassMode::Indirect { attrs: a1, extra_attrs: Some(e1), on_stack: s1 },
                PassMode::Indirect { attrs: a2, extra_attrs: Some(e2), on_stack: s2 },
            ) => arg_attr_compat(a1, a2) && arg_attr_compat(e1, e2) && s1 == s2,
            _ => false,
        };

        if layout_compat() && mode_compat() {
            return true;
        }
        trace!(
            "check_argument_compat: incompatible ABIs:\ncaller: {:?}\ncallee: {:?}",
            caller_abi,
            callee_abi
        );
        return false;
    }

    /// Initialize a single callee argument, checking the types for compatibility.
    fn pass_argument<'x, 'y>(
        &mut self,
        caller_args: &mut impl Iterator<
            Item = (&'x OpTy<'tcx, M::Provenance>, &'y ArgAbi<'tcx, Ty<'tcx>>),
        >,
        callee_abi: &ArgAbi<'tcx, Ty<'tcx>>,
        callee_arg: &PlaceTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx>
    where
        'tcx: 'x,
        'tcx: 'y,
    {
        if matches!(callee_abi.mode, PassMode::Ignore) {
            // This one is skipped.
            return Ok(());
        }
        // Find next caller arg.
        let (caller_arg, caller_abi) = caller_args.next().ok_or_else(|| {
            err_ub_format!("calling a function with fewer arguments than it requires")
        })?;
        // Now, check
        if !Self::check_argument_compat(caller_abi, callee_abi) {
            throw_ub_format!(
                "calling a function with argument of type {:?} passing data of type {:?}",
                callee_arg.layout.ty,
                caller_arg.layout.ty
            )
        }
        // Special handling for unsized parameters.
        if caller_arg.layout.is_unsized() {
            // `check_argument_compat` ensures that both have the same type, so we know they will use the metadata the same way.
            assert_eq!(caller_arg.layout.ty, callee_arg.layout.ty);
            // We have to properly pre-allocate the memory for the callee.
            // So let's tear down some wrappers.
            // This all has to be in memory, there are no immediate unsized values.
            let src = caller_arg.assert_mem_place();
            // The destination cannot be one of these "spread args".
            let (dest_frame, dest_local) = callee_arg.assert_local();
            // We are just initializing things, so there can't be anything here yet.
            assert!(matches!(
                *self.local_to_op(&self.stack()[dest_frame], dest_local, None)?,
                Operand::Immediate(Immediate::Uninit)
            ));
            // Allocate enough memory to hold `src`.
            let Some((size, align)) = self.size_and_align_of_mplace(&src)? else {
                span_bug!(self.cur_span(), "unsized fn arg with `extern` type tail should not be allowed")
            };
            let ptr = self.allocate_ptr(size, align, MemoryKind::Stack)?;
            let dest_place =
                MPlaceTy::from_aligned_ptr_with_meta(ptr.into(), callee_arg.layout, src.meta);
            // Update the local to be that new place.
            *M::access_local_mut(self, dest_frame, dest_local)? = Operand::Indirect(*dest_place);
        }
        // We allow some transmutes here.
        // FIXME: Depending on the PassMode, this should reset some padding to uninitialized. (This
        // is true for all `copy_op`, but there are a lot of special cases for argument passing
        // specifically.)
        self.copy_op(&caller_arg, callee_arg, /*allow_transmute*/ true)
    }

    /// Call this function -- pushing the stack frame and initializing the arguments.
    ///
    /// `caller_fn_abi` is used to determine if all the arguments are passed the proper way.
    /// However, we also need `caller_abi` to determine if we need to do untupling of arguments.
    ///
    /// `with_caller_location` indicates whether the caller passed a caller location. Miri
    /// implements caller locations without argument passing, but to match `FnAbi` we need to know
    /// when those arguments are present.
    pub(crate) fn eval_fn_call(
        &mut self,
        fn_val: FnVal<'tcx, M::ExtraFnVal>,
        (caller_abi, caller_fn_abi): (Abi, &FnAbi<'tcx, Ty<'tcx>>),
        args: &[OpTy<'tcx, M::Provenance>],
        with_caller_location: bool,
        destination: &PlaceTy<'tcx, M::Provenance>,
        target: Option<mir::BasicBlock>,
        mut unwind: StackPopUnwind,
    ) -> InterpResult<'tcx> {
        trace!("eval_fn_call: {:#?}", fn_val);

        let instance = match fn_val {
            FnVal::Instance(instance) => instance,
            FnVal::Other(extra) => {
                return M::call_extra_fn(
                    self,
                    extra,
                    caller_abi,
                    args,
                    destination,
                    target,
                    unwind,
                );
            }
        };

        match instance.def {
            ty::InstanceDef::Intrinsic(def_id) => {
                assert!(self.tcx.is_intrinsic(def_id));
                // caller_fn_abi is not relevant here, we interpret the arguments directly for each intrinsic.
                M::call_intrinsic(self, instance, args, destination, target, unwind)
            }
            ty::InstanceDef::VTableShim(..)
            | ty::InstanceDef::ReifyShim(..)
            | ty::InstanceDef::ClosureOnceShim { .. }
            | ty::InstanceDef::FnPtrShim(..)
            | ty::InstanceDef::DropGlue(..)
            | ty::InstanceDef::CloneShim(..)
            | ty::InstanceDef::Item(_) => {
                // We need MIR for this fn
                let Some((body, instance)) =
                    M::find_mir_or_eval_fn(self, instance, caller_abi, args, destination, target, unwind)? else {
                        return Ok(());
                    };

                // Compute callee information using the `instance` returned by
                // `find_mir_or_eval_fn`.
                // FIXME: for variadic support, do we have to somehow determine callee's extra_args?
                let callee_fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;

                if callee_fn_abi.c_variadic || caller_fn_abi.c_variadic {
                    throw_unsup_format!("calling a c-variadic function is not supported");
                }

                if M::enforce_abi(self) {
                    if caller_fn_abi.conv != callee_fn_abi.conv {
                        throw_ub_format!(
                            "calling a function with calling convention {:?} using calling convention {:?}",
                            callee_fn_abi.conv,
                            caller_fn_abi.conv
                        )
                    }
                }

                if !matches!(unwind, StackPopUnwind::NotAllowed) && !callee_fn_abi.can_unwind {
                    // The callee cannot unwind.
                    unwind = StackPopUnwind::NotAllowed;
                }

                self.push_stack_frame(
                    instance,
                    body,
                    destination,
                    StackPopCleanup::Goto { ret: target, unwind },
                )?;

                // If an error is raised here, pop the frame again to get an accurate backtrace.
                // To this end, we wrap it all in a `try` block.
                let res: InterpResult<'tcx> = try {
                    trace!(
                        "caller ABI: {:?}, args: {:#?}",
                        caller_abi,
                        args.iter()
                            .map(|arg| (arg.layout.ty, format!("{:?}", **arg)))
                            .collect::<Vec<_>>()
                    );
                    trace!(
                        "spread_arg: {:?}, locals: {:#?}",
                        body.spread_arg,
                        body.args_iter()
                            .map(|local| (
                                local,
                                self.layout_of_local(self.frame(), local, None).unwrap().ty
                            ))
                            .collect::<Vec<_>>()
                    );

                    // In principle, we have two iterators: Where the arguments come from, and where
                    // they go to.

                    // For where they come from: If the ABI is RustCall, we untuple the
                    // last incoming argument. These two iterators do not have the same type,
                    // so to keep the code paths uniform we accept an allocation
                    // (for RustCall ABI only).
                    let caller_args: Cow<'_, [OpTy<'tcx, M::Provenance>]> =
                        if caller_abi == Abi::RustCall && !args.is_empty() {
                            // Untuple
                            let (untuple_arg, args) = args.split_last().unwrap();
                            trace!("eval_fn_call: Will pass last argument by untupling");
                            Cow::from(
                                args.iter()
                                    .map(|a| Ok(a.clone()))
                                    .chain(
                                        (0..untuple_arg.layout.fields.count())
                                            .map(|i| self.operand_field(untuple_arg, i)),
                                    )
                                    .collect::<InterpResult<'_, Vec<OpTy<'tcx, M::Provenance>>>>(
                                    )?,
                            )
                        } else {
                            // Plain arg passing
                            Cow::from(args)
                        };
                    // If `with_caller_location` is set we pretend there is an extra argument (that
                    // we will not pass).
                    assert_eq!(
                        caller_args.len() + if with_caller_location { 1 } else { 0 },
                        caller_fn_abi.args.len(),
                        "mismatch between caller ABI and caller arguments",
                    );
                    let mut caller_args = caller_args
                        .iter()
                        .zip(caller_fn_abi.args.iter())
                        .filter(|arg_and_abi| !matches!(arg_and_abi.1.mode, PassMode::Ignore));

                    // Now we have to spread them out across the callee's locals,
                    // taking into account the `spread_arg`. If we could write
                    // this is a single iterator (that handles `spread_arg`), then
                    // `pass_argument` would be the loop body. It takes care to
                    // not advance `caller_iter` for ZSTs.
                    let mut callee_args_abis = callee_fn_abi.args.iter();
                    for local in body.args_iter() {
                        let dest = self.eval_place(mir::Place::from(local))?;
                        if Some(local) == body.spread_arg {
                            // Must be a tuple
                            for i in 0..dest.layout.fields.count() {
                                let dest = self.place_field(&dest, i)?;
                                let callee_abi = callee_args_abis.next().unwrap();
                                self.pass_argument(&mut caller_args, callee_abi, &dest)?;
                            }
                        } else {
                            // Normal argument
                            let callee_abi = callee_args_abis.next().unwrap();
                            self.pass_argument(&mut caller_args, callee_abi, &dest)?;
                        }
                    }
                    // If the callee needs a caller location, pretend we consume one more argument from the ABI.
                    if instance.def.requires_caller_location(*self.tcx) {
                        callee_args_abis.next().unwrap();
                    }
                    // Now we should have no more caller args or callee arg ABIs
                    assert!(
                        callee_args_abis.next().is_none(),
                        "mismatch between callee ABI and callee body arguments"
                    );
                    if caller_args.next().is_some() {
                        throw_ub_format!("calling a function with more arguments than it expected")
                    }
                    // Don't forget to check the return type!
                    if !Self::check_argument_compat(&caller_fn_abi.ret, &callee_fn_abi.ret) {
                        throw_ub_format!(
                            "calling a function with return type {:?} passing \
                                    return place of type {:?}",
                            callee_fn_abi.ret.layout.ty,
                            caller_fn_abi.ret.layout.ty,
                        )
                    }
                };
                match res {
                    Err(err) => {
                        self.stack_mut().pop();
                        Err(err)
                    }
                    Ok(()) => Ok(()),
                }
            }
            // cannot use the shim here, because that will only result in infinite recursion
            ty::InstanceDef::Virtual(def_id, idx) => {
                let mut args = args.to_vec();
                // We have to implement all "object safe receivers". So we have to go search for a
                // pointer or `dyn Trait` type, but it could be wrapped in newtypes. So recursively
                // unwrap those newtypes until we are there.
                let mut receiver = args[0].clone();
                let receiver_place = loop {
                    match receiver.layout.ty.kind() {
                        ty::Ref(..) | ty::RawPtr(..) => break self.deref_operand(&receiver)?,
                        ty::Dynamic(..) => break receiver.assert_mem_place(), // no immediate unsized values
                        _ => {
                            // Not there yet, search for the only non-ZST field.
                            let mut non_zst_field = None;
                            for i in 0..receiver.layout.fields.count() {
                                let field = self.operand_field(&receiver, i)?;
                                let zst =
                                    field.layout.is_zst() && field.layout.align.abi.bytes() == 1;
                                if !zst {
                                    assert!(
                                        non_zst_field.is_none(),
                                        "multiple non-ZST fields in dyn receiver type {}",
                                        receiver.layout.ty
                                    );
                                    non_zst_field = Some(field);
                                }
                            }
                            receiver = non_zst_field.unwrap_or_else(|| {
                                panic!(
                                    "no non-ZST fields in dyn receiver type {}",
                                    receiver.layout.ty
                                )
                            });
                        }
                    }
                };
                // Obtain the underlying trait we are working on.
                let receiver_tail = self
                    .tcx
                    .struct_tail_erasing_lifetimes(receiver_place.layout.ty, self.param_env);
                let ty::Dynamic(data, ..) = receiver_tail.kind() else {
                    span_bug!(self.cur_span(), "dynamic call on non-`dyn` type {}", receiver_tail)
                };

                // Get the required information from the vtable.
                let vptr = receiver_place.meta.unwrap_meta().to_pointer(self)?;
                let (dyn_ty, dyn_trait) = self.get_ptr_vtable(vptr)?;
                if dyn_trait != data.principal() {
                    throw_ub_format!(
                        "`dyn` call on a pointer whose vtable does not match its type"
                    );
                }

                // Now determine the actual method to call. We can do that in two different ways and
                // compare them to ensure everything fits.
                let Some(ty::VtblEntry::Method(fn_inst)) = self.get_vtable_entries(vptr)?.get(idx).copied() else {
                    throw_ub_format!("`dyn` call trying to call something that is not a method")
                };
                if cfg!(debug_assertions) {
                    let tcx = *self.tcx;

                    let trait_def_id = tcx.trait_of_item(def_id).unwrap();
                    let virtual_trait_ref =
                        ty::TraitRef::from_method(tcx, trait_def_id, instance.substs);
                    assert_eq!(
                        receiver_tail,
                        virtual_trait_ref.self_ty(),
                        "mismatch in underlying dyn trait computation within Miri and MIR building",
                    );
                    let existential_trait_ref =
                        ty::ExistentialTraitRef::erase_self_ty(tcx, virtual_trait_ref);
                    let concrete_trait_ref = existential_trait_ref.with_self_ty(tcx, dyn_ty);

                    let concrete_method = Instance::resolve_for_vtable(
                        tcx,
                        self.param_env,
                        def_id,
                        instance.substs.rebase_onto(tcx, trait_def_id, concrete_trait_ref.substs),
                    )
                    .unwrap();
                    assert_eq!(fn_inst, concrete_method);
                }

                // `*mut receiver_place.layout.ty` is almost the layout that we
                // want for args[0]: We have to project to field 0 because we want
                // a thin pointer.
                assert!(receiver_place.layout.is_unsized());
                let receiver_ptr_ty = self.tcx.mk_mut_ptr(receiver_place.layout.ty);
                let this_receiver_ptr = self.layout_of(receiver_ptr_ty)?.field(self, 0);
                // Adjust receiver argument.
                args[0] = OpTy::from(ImmTy::from_immediate(
                    Scalar::from_maybe_pointer(receiver_place.ptr, self).into(),
                    this_receiver_ptr,
                ));
                trace!("Patched receiver operand to {:#?}", args[0]);
                // recurse with concrete function
                self.eval_fn_call(
                    FnVal::Instance(fn_inst),
                    (caller_abi, caller_fn_abi),
                    &args,
                    with_caller_location,
                    destination,
                    target,
                    unwind,
                )
            }
        }
    }

    fn drop_in_place(
        &mut self,
        place: &PlaceTy<'tcx, M::Provenance>,
        instance: ty::Instance<'tcx>,
        target: mir::BasicBlock,
        unwind: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx> {
        trace!("drop_in_place: {:?},\n  {:?}, {:?}", *place, place.layout.ty, instance);
        // We take the address of the object. This may well be unaligned, which is fine
        // for us here. However, unaligned accesses will probably make the actual drop
        // implementation fail -- a problem shared by rustc.
        let place = self.force_allocation(place)?;

        let (instance, place) = match place.layout.ty.kind() {
            ty::Dynamic(..) => {
                // Dropping a trait object. Need to find actual drop fn.
                let place = self.unpack_dyn_trait(&place)?;
                let instance = ty::Instance::resolve_drop_in_place(*self.tcx, place.layout.ty);
                (instance, place)
            }
            _ => (instance, place),
        };
        let fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;

        let arg = ImmTy::from_immediate(
            place.to_ref(self),
            self.layout_of(self.tcx.mk_mut_ptr(place.layout.ty))?,
        );
        let ret = MPlaceTy::fake_alloc_zst(self.layout_of(self.tcx.types.unit)?);

        self.eval_fn_call(
            FnVal::Instance(instance),
            (Abi::Rust, fn_abi),
            &[arg.into()],
            false,
            &ret.into(),
            Some(target),
            match unwind {
                Some(cleanup) => StackPopUnwind::Cleanup(cleanup),
                None => StackPopUnwind::Skip,
            },
        )
    }
}