summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_const_eval/src/interpret/validity.rs
blob: 8aa56c275d91b93c51b1618c87687a9146ca57c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
//! Check the validity invariant of a given value, and tell the user
//! where in the value it got violated.
//! In const context, this goes even further and tries to approximate const safety.
//! That's useful because it means other passes (e.g. promotion) can rely on `const`s
//! to be const-safe.

use std::convert::TryFrom;
use std::fmt::{Display, Write};
use std::num::NonZeroUsize;

use rustc_ast::Mutability;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_middle::mir::interpret::InterpError;
use rustc_middle::ty;
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_span::symbol::{sym, Symbol};
use rustc_target::abi::{Abi, Scalar as ScalarAbi, Size, VariantIdx, Variants, WrappingRange};

use std::hash::Hash;

// for the validation errors
use super::UndefinedBehaviorInfo::*;
use super::{
    CheckInAllocMsg, GlobalAlloc, ImmTy, Immediate, InterpCx, InterpResult, MPlaceTy, Machine,
    MemPlaceMeta, OpTy, Scalar, ValueVisitor,
};

macro_rules! throw_validation_failure {
    ($where:expr, { $( $what_fmt:expr ),+ } $( expected { $( $expected_fmt:expr ),+ } )?) => {{
        let mut msg = String::new();
        msg.push_str("encountered ");
        write!(&mut msg, $($what_fmt),+).unwrap();
        $(
            msg.push_str(", but expected ");
            write!(&mut msg, $($expected_fmt),+).unwrap();
        )?
        let path = rustc_middle::ty::print::with_no_trimmed_paths!({
            let where_ = &$where;
            if !where_.is_empty() {
                let mut path = String::new();
                write_path(&mut path, where_);
                Some(path)
            } else {
                None
            }
        });
        throw_ub!(ValidationFailure { path, msg })
    }};
}

/// If $e throws an error matching the pattern, throw a validation failure.
/// Other errors are passed back to the caller, unchanged -- and if they reach the root of
/// the visitor, we make sure only validation errors and `InvalidProgram` errors are left.
/// This lets you use the patterns as a kind of validation list, asserting which errors
/// can possibly happen:
///
/// ```ignore(illustrative)
/// let v = try_validation!(some_fn(), some_path, {
///     Foo | Bar | Baz => { "some failure" },
/// });
/// ```
///
/// The patterns must be of type `UndefinedBehaviorInfo`.
/// An additional expected parameter can also be added to the failure message:
///
/// ```ignore(illustrative)
/// let v = try_validation!(some_fn(), some_path, {
///     Foo | Bar | Baz => { "some failure" } expected { "something that wasn't a failure" },
/// });
/// ```
///
/// An additional nicety is that both parameters actually take format args, so you can just write
/// the format string in directly:
///
/// ```ignore(illustrative)
/// let v = try_validation!(some_fn(), some_path, {
///     Foo | Bar | Baz => { "{:?}", some_failure } expected { "{}", expected_value },
/// });
/// ```
///
macro_rules! try_validation {
    ($e:expr, $where:expr,
    $( $( $p:pat_param )|+ => { $( $what_fmt:expr ),+ } $( expected { $( $expected_fmt:expr ),+ } )? ),+ $(,)?
    ) => {{
        match $e {
            Ok(x) => x,
            // We catch the error and turn it into a validation failure. We are okay with
            // allocation here as this can only slow down builds that fail anyway.
            Err(e) => match e.kind() {
                $(
                    InterpError::UndefinedBehavior($($p)|+) =>
                       throw_validation_failure!(
                            $where,
                            { $( $what_fmt ),+ } $( expected { $( $expected_fmt ),+ } )?
                        )
                ),+,
                #[allow(unreachable_patterns)]
                _ => Err::<!, _>(e)?,
            }
        }
    }};
}

/// We want to show a nice path to the invalid field for diagnostics,
/// but avoid string operations in the happy case where no error happens.
/// So we track a `Vec<PathElem>` where `PathElem` contains all the data we
/// need to later print something for the user.
#[derive(Copy, Clone, Debug)]
pub enum PathElem {
    Field(Symbol),
    Variant(Symbol),
    GeneratorState(VariantIdx),
    CapturedVar(Symbol),
    ArrayElem(usize),
    TupleElem(usize),
    Deref,
    EnumTag,
    GeneratorTag,
    DynDowncast,
}

/// Extra things to check for during validation of CTFE results.
pub enum CtfeValidationMode {
    /// Regular validation, nothing special happening.
    Regular,
    /// Validation of a `const`.
    /// `inner` says if this is an inner, indirect allocation (as opposed to the top-level const
    /// allocation). Being an inner allocation makes a difference because the top-level allocation
    /// of a `const` is copied for each use, but the inner allocations are implicitly shared.
    /// `allow_static_ptrs` says if pointers to statics are permitted (which is the case for promoteds in statics).
    Const { inner: bool, allow_static_ptrs: bool },
}

/// State for tracking recursive validation of references
pub struct RefTracking<T, PATH = ()> {
    pub seen: FxHashSet<T>,
    pub todo: Vec<(T, PATH)>,
}

impl<T: Copy + Eq + Hash + std::fmt::Debug, PATH: Default> RefTracking<T, PATH> {
    pub fn empty() -> Self {
        RefTracking { seen: FxHashSet::default(), todo: vec![] }
    }
    pub fn new(op: T) -> Self {
        let mut ref_tracking_for_consts =
            RefTracking { seen: FxHashSet::default(), todo: vec![(op, PATH::default())] };
        ref_tracking_for_consts.seen.insert(op);
        ref_tracking_for_consts
    }

    pub fn track(&mut self, op: T, path: impl FnOnce() -> PATH) {
        if self.seen.insert(op) {
            trace!("Recursing below ptr {:#?}", op);
            let path = path();
            // Remember to come back to this later.
            self.todo.push((op, path));
        }
    }
}

/// Format a path
fn write_path(out: &mut String, path: &[PathElem]) {
    use self::PathElem::*;

    for elem in path.iter() {
        match elem {
            Field(name) => write!(out, ".{}", name),
            EnumTag => write!(out, ".<enum-tag>"),
            Variant(name) => write!(out, ".<enum-variant({})>", name),
            GeneratorTag => write!(out, ".<generator-tag>"),
            GeneratorState(idx) => write!(out, ".<generator-state({})>", idx.index()),
            CapturedVar(name) => write!(out, ".<captured-var({})>", name),
            TupleElem(idx) => write!(out, ".{}", idx),
            ArrayElem(idx) => write!(out, "[{}]", idx),
            // `.<deref>` does not match Rust syntax, but it is more readable for long paths -- and
            // some of the other items here also are not Rust syntax.  Actually we can't
            // even use the usual syntax because we are just showing the projections,
            // not the root.
            Deref => write!(out, ".<deref>"),
            DynDowncast => write!(out, ".<dyn-downcast>"),
        }
        .unwrap()
    }
}

// Formats such that a sentence like "expected something {}" to mean
// "expected something <in the given range>" makes sense.
fn wrapping_range_format(r: WrappingRange, max_hi: u128) -> String {
    let WrappingRange { start: lo, end: hi } = r;
    assert!(hi <= max_hi);
    if lo > hi {
        format!("less or equal to {}, or greater or equal to {}", hi, lo)
    } else if lo == hi {
        format!("equal to {}", lo)
    } else if lo == 0 {
        assert!(hi < max_hi, "should not be printing if the range covers everything");
        format!("less or equal to {}", hi)
    } else if hi == max_hi {
        assert!(lo > 0, "should not be printing if the range covers everything");
        format!("greater or equal to {}", lo)
    } else {
        format!("in the range {:?}", r)
    }
}

struct ValidityVisitor<'rt, 'mir, 'tcx, M: Machine<'mir, 'tcx>> {
    /// The `path` may be pushed to, but the part that is present when a function
    /// starts must not be changed!  `visit_fields` and `visit_array` rely on
    /// this stack discipline.
    path: Vec<PathElem>,
    ref_tracking: Option<&'rt mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>>,
    /// `None` indicates this is not validating for CTFE (but for runtime).
    ctfe_mode: Option<CtfeValidationMode>,
    ecx: &'rt InterpCx<'mir, 'tcx, M>,
}

impl<'rt, 'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> ValidityVisitor<'rt, 'mir, 'tcx, M> {
    fn aggregate_field_path_elem(&mut self, layout: TyAndLayout<'tcx>, field: usize) -> PathElem {
        // First, check if we are projecting to a variant.
        match layout.variants {
            Variants::Multiple { tag_field, .. } => {
                if tag_field == field {
                    return match layout.ty.kind() {
                        ty::Adt(def, ..) if def.is_enum() => PathElem::EnumTag,
                        ty::Generator(..) => PathElem::GeneratorTag,
                        _ => bug!("non-variant type {:?}", layout.ty),
                    };
                }
            }
            Variants::Single { .. } => {}
        }

        // Now we know we are projecting to a field, so figure out which one.
        match layout.ty.kind() {
            // generators and closures.
            ty::Closure(def_id, _) | ty::Generator(def_id, _, _) => {
                let mut name = None;
                // FIXME this should be more descriptive i.e. CapturePlace instead of CapturedVar
                // https://github.com/rust-lang/project-rfc-2229/issues/46
                if let Some(local_def_id) = def_id.as_local() {
                    let tables = self.ecx.tcx.typeck(local_def_id);
                    if let Some(captured_place) =
                        tables.closure_min_captures_flattened(local_def_id).nth(field)
                    {
                        // Sometimes the index is beyond the number of upvars (seen
                        // for a generator).
                        let var_hir_id = captured_place.get_root_variable();
                        let node = self.ecx.tcx.hir().get(var_hir_id);
                        if let hir::Node::Pat(pat) = node {
                            if let hir::PatKind::Binding(_, _, ident, _) = pat.kind {
                                name = Some(ident.name);
                            }
                        }
                    }
                }

                PathElem::CapturedVar(name.unwrap_or_else(|| {
                    // Fall back to showing the field index.
                    sym::integer(field)
                }))
            }

            // tuples
            ty::Tuple(_) => PathElem::TupleElem(field),

            // enums
            ty::Adt(def, ..) if def.is_enum() => {
                // we might be projecting *to* a variant, or to a field *in* a variant.
                match layout.variants {
                    Variants::Single { index } => {
                        // Inside a variant
                        PathElem::Field(def.variant(index).fields[field].name)
                    }
                    Variants::Multiple { .. } => bug!("we handled variants above"),
                }
            }

            // other ADTs
            ty::Adt(def, _) => PathElem::Field(def.non_enum_variant().fields[field].name),

            // arrays/slices
            ty::Array(..) | ty::Slice(..) => PathElem::ArrayElem(field),

            // dyn traits
            ty::Dynamic(..) => PathElem::DynDowncast,

            // nothing else has an aggregate layout
            _ => bug!("aggregate_field_path_elem: got non-aggregate type {:?}", layout.ty),
        }
    }

    fn with_elem<R>(
        &mut self,
        elem: PathElem,
        f: impl FnOnce(&mut Self) -> InterpResult<'tcx, R>,
    ) -> InterpResult<'tcx, R> {
        // Remember the old state
        let path_len = self.path.len();
        // Record new element
        self.path.push(elem);
        // Perform operation
        let r = f(self)?;
        // Undo changes
        self.path.truncate(path_len);
        // Done
        Ok(r)
    }

    fn read_immediate(
        &self,
        op: &OpTy<'tcx, M::Provenance>,
        expected: impl Display,
    ) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
        Ok(try_validation!(
            self.ecx.read_immediate(op),
            self.path,
            InvalidUninitBytes(None) => { "uninitialized memory" } expected { "{expected}" }
        ))
    }

    fn read_scalar(
        &self,
        op: &OpTy<'tcx, M::Provenance>,
        expected: impl Display,
    ) -> InterpResult<'tcx, Scalar<M::Provenance>> {
        Ok(self.read_immediate(op, expected)?.to_scalar())
    }

    fn check_wide_ptr_meta(
        &mut self,
        meta: MemPlaceMeta<M::Provenance>,
        pointee: TyAndLayout<'tcx>,
    ) -> InterpResult<'tcx> {
        let tail = self.ecx.tcx.struct_tail_erasing_lifetimes(pointee.ty, self.ecx.param_env);
        match tail.kind() {
            ty::Dynamic(..) => {
                let vtable = meta.unwrap_meta().to_pointer(self.ecx)?;
                // Make sure it is a genuine vtable pointer.
                let (_ty, _trait) = try_validation!(
                    self.ecx.get_ptr_vtable(vtable),
                    self.path,
                    DanglingIntPointer(..) |
                    InvalidVTablePointer(..) =>
                        { "{vtable}" } expected { "a vtable pointer" },
                );
                // FIXME: check if the type/trait match what ty::Dynamic says?
            }
            ty::Slice(..) | ty::Str => {
                let _len = meta.unwrap_meta().to_machine_usize(self.ecx)?;
                // We do not check that `len * elem_size <= isize::MAX`:
                // that is only required for references, and there it falls out of the
                // "dereferenceable" check performed by Stacked Borrows.
            }
            ty::Foreign(..) => {
                // Unsized, but not wide.
            }
            _ => bug!("Unexpected unsized type tail: {:?}", tail),
        }

        Ok(())
    }

    /// Check a reference or `Box`.
    fn check_safe_pointer(
        &mut self,
        value: &OpTy<'tcx, M::Provenance>,
        kind: &str,
    ) -> InterpResult<'tcx> {
        let place =
            self.ecx.ref_to_mplace(&self.read_immediate(value, format_args!("a {kind}"))?)?;
        // Handle wide pointers.
        // Check metadata early, for better diagnostics
        if place.layout.is_unsized() {
            self.check_wide_ptr_meta(place.meta, place.layout)?;
        }
        // Make sure this is dereferenceable and all.
        let size_and_align = try_validation!(
            self.ecx.size_and_align_of_mplace(&place),
            self.path,
            InvalidMeta(msg) => { "invalid {} metadata: {}", kind, msg },
        );
        let (size, align) = size_and_align
            // for the purpose of validity, consider foreign types to have
            // alignment and size determined by the layout (size will be 0,
            // alignment should take attributes into account).
            .unwrap_or_else(|| (place.layout.size, place.layout.align.abi));
        // Direct call to `check_ptr_access_align` checks alignment even on CTFE machines.
        try_validation!(
            self.ecx.check_ptr_access_align(
                place.ptr,
                size,
                align,
                CheckInAllocMsg::InboundsTest, // will anyway be replaced by validity message
            ),
            self.path,
            AlignmentCheckFailed { required, has } =>
                {
                    "an unaligned {kind} (required {} byte alignment but found {})",
                    required.bytes(),
                    has.bytes()
                },
            DanglingIntPointer(0, _) =>
                { "a null {kind}" },
            DanglingIntPointer(i, _) =>
                { "a dangling {kind} (address {i:#x} is unallocated)" },
            PointerOutOfBounds { .. } =>
                { "a dangling {kind} (going beyond the bounds of its allocation)" },
            // This cannot happen during const-eval (because interning already detects
            // dangling pointers), but it can happen in Miri.
            PointerUseAfterFree(..) =>
                { "a dangling {kind} (use-after-free)" },
        );
        // Do not allow pointers to uninhabited types.
        if place.layout.abi.is_uninhabited() {
            throw_validation_failure!(self.path,
                { "a {kind} pointing to uninhabited type {}", place.layout.ty }
            )
        }
        // Recursive checking
        if let Some(ref mut ref_tracking) = self.ref_tracking {
            // Proceed recursively even for ZST, no reason to skip them!
            // `!` is a ZST and we want to validate it.
            if let Ok((alloc_id, _offset, _prov)) = self.ecx.ptr_try_get_alloc_id(place.ptr) {
                // Let's see what kind of memory this points to.
                let alloc_kind = self.ecx.tcx.try_get_global_alloc(alloc_id);
                match alloc_kind {
                    Some(GlobalAlloc::Static(did)) => {
                        // Special handling for pointers to statics (irrespective of their type).
                        assert!(!self.ecx.tcx.is_thread_local_static(did));
                        assert!(self.ecx.tcx.is_static(did));
                        if matches!(
                            self.ctfe_mode,
                            Some(CtfeValidationMode::Const { allow_static_ptrs: false, .. })
                        ) {
                            // See const_eval::machine::MemoryExtra::can_access_statics for why
                            // this check is so important.
                            // This check is reachable when the const just referenced the static,
                            // but never read it (so we never entered `before_access_global`).
                            throw_validation_failure!(self.path,
                                { "a {} pointing to a static variable in a constant", kind }
                            );
                        }
                        // We skip recursively checking other statics. These statics must be sound by
                        // themselves, and the only way to get broken statics here is by using
                        // unsafe code.
                        // The reasons we don't check other statics is twofold. For one, in all
                        // sound cases, the static was already validated on its own, and second, we
                        // trigger cycle errors if we try to compute the value of the other static
                        // and that static refers back to us.
                        // We might miss const-invalid data,
                        // but things are still sound otherwise (in particular re: consts
                        // referring to statics).
                        return Ok(());
                    }
                    Some(GlobalAlloc::Memory(alloc)) => {
                        if alloc.inner().mutability == Mutability::Mut
                            && matches!(self.ctfe_mode, Some(CtfeValidationMode::Const { .. }))
                        {
                            // This should be unreachable, but if someone manages to copy a pointer
                            // out of a `static`, then that pointer might point to mutable memory,
                            // and we would catch that here.
                            throw_validation_failure!(self.path,
                                { "a {} pointing to mutable memory in a constant", kind }
                            );
                        }
                    }
                    // Nothing to check for these.
                    None | Some(GlobalAlloc::Function(..) | GlobalAlloc::VTable(..)) => {}
                }
            }
            let path = &self.path;
            ref_tracking.track(place, || {
                // We need to clone the path anyway, make sure it gets created
                // with enough space for the additional `Deref`.
                let mut new_path = Vec::with_capacity(path.len() + 1);
                new_path.extend(path);
                new_path.push(PathElem::Deref);
                new_path
            });
        }
        Ok(())
    }

    /// Check if this is a value of primitive type, and if yes check the validity of the value
    /// at that type.  Return `true` if the type is indeed primitive.
    fn try_visit_primitive(
        &mut self,
        value: &OpTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, bool> {
        // Go over all the primitive types
        let ty = value.layout.ty;
        match ty.kind() {
            ty::Bool => {
                let value = self.read_scalar(value, "a boolean")?;
                try_validation!(
                    value.to_bool(),
                    self.path,
                    InvalidBool(..) =>
                        { "{:x}", value } expected { "a boolean" },
                );
                Ok(true)
            }
            ty::Char => {
                let value = self.read_scalar(value, "a unicode scalar value")?;
                try_validation!(
                    value.to_char(),
                    self.path,
                    InvalidChar(..) =>
                        { "{:x}", value } expected { "a valid unicode scalar value (in `0..=0x10FFFF` but not in `0xD800..=0xDFFF`)" },
                );
                Ok(true)
            }
            ty::Float(_) | ty::Int(_) | ty::Uint(_) => {
                // NOTE: Keep this in sync with the array optimization for int/float
                // types below!
                let value = self.read_scalar(
                    value,
                    if matches!(ty.kind(), ty::Float(..)) {
                        "a floating point number"
                    } else {
                        "an integer"
                    },
                )?;
                // As a special exception we *do* match on a `Scalar` here, since we truly want
                // to know its underlying representation (and *not* cast it to an integer).
                if matches!(value, Scalar::Ptr(..)) {
                    throw_validation_failure!(self.path,
                        { "{:x}", value } expected { "plain (non-pointer) bytes" }
                    )
                }
                Ok(true)
            }
            ty::RawPtr(..) => {
                // We are conservative with uninit for integers, but try to
                // actually enforce the strict rules for raw pointers (mostly because
                // that lets us re-use `ref_to_mplace`).
                let place =
                    self.ecx.ref_to_mplace(&self.read_immediate(value, "a raw pointer")?)?;
                if place.layout.is_unsized() {
                    self.check_wide_ptr_meta(place.meta, place.layout)?;
                }
                Ok(true)
            }
            ty::Ref(_, ty, mutbl) => {
                if matches!(self.ctfe_mode, Some(CtfeValidationMode::Const { .. }))
                    && *mutbl == Mutability::Mut
                {
                    // A mutable reference inside a const? That does not seem right (except if it is
                    // a ZST).
                    let layout = self.ecx.layout_of(*ty)?;
                    if !layout.is_zst() {
                        throw_validation_failure!(self.path, { "mutable reference in a `const`" });
                    }
                }
                self.check_safe_pointer(value, "reference")?;
                Ok(true)
            }
            ty::FnPtr(_sig) => {
                let value = self.read_scalar(value, "a function pointer")?;

                // If we check references recursively, also check that this points to a function.
                if let Some(_) = self.ref_tracking {
                    let ptr = value.to_pointer(self.ecx)?;
                    let _fn = try_validation!(
                        self.ecx.get_ptr_fn(ptr),
                        self.path,
                        DanglingIntPointer(..) |
                        InvalidFunctionPointer(..) =>
                            { "{ptr}" } expected { "a function pointer" },
                    );
                    // FIXME: Check if the signature matches
                } else {
                    // Otherwise (for standalone Miri), we have to still check it to be non-null.
                    if self.ecx.scalar_may_be_null(value)? {
                        throw_validation_failure!(self.path, { "a null function pointer" });
                    }
                }
                Ok(true)
            }
            ty::Never => throw_validation_failure!(self.path, { "a value of the never type `!`" }),
            ty::Foreign(..) | ty::FnDef(..) => {
                // Nothing to check.
                Ok(true)
            }
            // The above should be all the primitive types. The rest is compound, we
            // check them by visiting their fields/variants.
            ty::Adt(..)
            | ty::Tuple(..)
            | ty::Array(..)
            | ty::Slice(..)
            | ty::Str
            | ty::Dynamic(..)
            | ty::Closure(..)
            | ty::Generator(..) => Ok(false),
            // Some types only occur during typechecking, they have no layout.
            // We should not see them here and we could not check them anyway.
            ty::Error(_)
            | ty::Infer(..)
            | ty::Placeholder(..)
            | ty::Bound(..)
            | ty::Param(..)
            | ty::Opaque(..)
            | ty::Projection(..)
            | ty::GeneratorWitness(..) => bug!("Encountered invalid type {:?}", ty),
        }
    }

    fn visit_scalar(
        &mut self,
        scalar: Scalar<M::Provenance>,
        scalar_layout: ScalarAbi,
    ) -> InterpResult<'tcx> {
        let size = scalar_layout.size(self.ecx);
        let valid_range = scalar_layout.valid_range(self.ecx);
        let WrappingRange { start, end } = valid_range;
        let max_value = size.unsigned_int_max();
        assert!(end <= max_value);
        let bits = match scalar.try_to_int() {
            Ok(int) => int.assert_bits(size),
            Err(_) => {
                // So this is a pointer then, and casting to an int failed.
                // Can only happen during CTFE.
                // We support 2 kinds of ranges here: full range, and excluding zero.
                if start == 1 && end == max_value {
                    // Only null is the niche.  So make sure the ptr is NOT null.
                    if self.ecx.scalar_may_be_null(scalar)? {
                        throw_validation_failure!(self.path,
                            { "a potentially null pointer" }
                            expected {
                                "something that cannot possibly fail to be {}",
                                wrapping_range_format(valid_range, max_value)
                            }
                        )
                    } else {
                        return Ok(());
                    }
                } else if scalar_layout.is_always_valid(self.ecx) {
                    // Easy. (This is reachable if `enforce_number_validity` is set.)
                    return Ok(());
                } else {
                    // Conservatively, we reject, because the pointer *could* have a bad
                    // value.
                    throw_validation_failure!(self.path,
                        { "a pointer" }
                        expected {
                            "something that cannot possibly fail to be {}",
                            wrapping_range_format(valid_range, max_value)
                        }
                    )
                }
            }
        };
        // Now compare.
        if valid_range.contains(bits) {
            Ok(())
        } else {
            throw_validation_failure!(self.path,
                { "{}", bits }
                expected { "something {}", wrapping_range_format(valid_range, max_value) }
            )
        }
    }
}

impl<'rt, 'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> ValueVisitor<'mir, 'tcx, M>
    for ValidityVisitor<'rt, 'mir, 'tcx, M>
{
    type V = OpTy<'tcx, M::Provenance>;

    #[inline(always)]
    fn ecx(&self) -> &InterpCx<'mir, 'tcx, M> {
        &self.ecx
    }

    fn read_discriminant(
        &mut self,
        op: &OpTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, VariantIdx> {
        self.with_elem(PathElem::EnumTag, move |this| {
            Ok(try_validation!(
                this.ecx.read_discriminant(op),
                this.path,
                InvalidTag(val) =>
                    { "{:x}", val } expected { "a valid enum tag" },
                InvalidUninitBytes(None) =>
                    { "uninitialized bytes" } expected { "a valid enum tag" },
            )
            .1)
        })
    }

    #[inline]
    fn visit_field(
        &mut self,
        old_op: &OpTy<'tcx, M::Provenance>,
        field: usize,
        new_op: &OpTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx> {
        let elem = self.aggregate_field_path_elem(old_op.layout, field);
        self.with_elem(elem, move |this| this.visit_value(new_op))
    }

    #[inline]
    fn visit_variant(
        &mut self,
        old_op: &OpTy<'tcx, M::Provenance>,
        variant_id: VariantIdx,
        new_op: &OpTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx> {
        let name = match old_op.layout.ty.kind() {
            ty::Adt(adt, _) => PathElem::Variant(adt.variant(variant_id).name),
            // Generators also have variants
            ty::Generator(..) => PathElem::GeneratorState(variant_id),
            _ => bug!("Unexpected type with variant: {:?}", old_op.layout.ty),
        };
        self.with_elem(name, move |this| this.visit_value(new_op))
    }

    #[inline(always)]
    fn visit_union(
        &mut self,
        op: &OpTy<'tcx, M::Provenance>,
        _fields: NonZeroUsize,
    ) -> InterpResult<'tcx> {
        // Special check preventing `UnsafeCell` inside unions in the inner part of constants.
        if matches!(self.ctfe_mode, Some(CtfeValidationMode::Const { inner: true, .. })) {
            if !op.layout.ty.is_freeze(*self.ecx.tcx, self.ecx.param_env) {
                throw_validation_failure!(self.path, { "`UnsafeCell` in a `const`" });
            }
        }
        Ok(())
    }

    #[inline]
    fn visit_box(&mut self, op: &OpTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
        self.check_safe_pointer(op, "box")?;
        Ok(())
    }

    #[inline]
    fn visit_value(&mut self, op: &OpTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
        trace!("visit_value: {:?}, {:?}", *op, op.layout);

        // Check primitive types -- the leaves of our recursive descent.
        if self.try_visit_primitive(op)? {
            return Ok(());
        }

        // Special check preventing `UnsafeCell` in the inner part of constants
        if let Some(def) = op.layout.ty.ty_adt_def() {
            if matches!(self.ctfe_mode, Some(CtfeValidationMode::Const { inner: true, .. }))
                && def.is_unsafe_cell()
            {
                throw_validation_failure!(self.path, { "`UnsafeCell` in a `const`" });
            }
        }

        // Recursively walk the value at its type.
        self.walk_value(op)?;

        // *After* all of this, check the ABI.  We need to check the ABI to handle
        // types like `NonNull` where the `Scalar` info is more restrictive than what
        // the fields say (`rustc_layout_scalar_valid_range_start`).
        // But in most cases, this will just propagate what the fields say,
        // and then we want the error to point at the field -- so, first recurse,
        // then check ABI.
        //
        // FIXME: We could avoid some redundant checks here. For newtypes wrapping
        // scalars, we do the same check on every "level" (e.g., first we check
        // MyNewtype and then the scalar in there).
        match op.layout.abi {
            Abi::Uninhabited => {
                throw_validation_failure!(self.path,
                    { "a value of uninhabited type {:?}", op.layout.ty }
                );
            }
            Abi::Scalar(scalar_layout) => {
                if !scalar_layout.is_uninit_valid() {
                    // There is something to check here.
                    let scalar = self.read_scalar(op, "initiailized scalar value")?;
                    self.visit_scalar(scalar, scalar_layout)?;
                }
            }
            Abi::ScalarPair(a_layout, b_layout) => {
                // There is no `rustc_layout_scalar_valid_range_start` for pairs, so
                // we would validate these things as we descend into the fields,
                // but that can miss bugs in layout computation. Layout computation
                // is subtle due to enums having ScalarPair layout, where one field
                // is the discriminant.
                if cfg!(debug_assertions)
                    && !a_layout.is_uninit_valid()
                    && !b_layout.is_uninit_valid()
                {
                    // We can only proceed if *both* scalars need to be initialized.
                    // FIXME: find a way to also check ScalarPair when one side can be uninit but
                    // the other must be init.
                    let (a, b) =
                        self.read_immediate(op, "initiailized scalar value")?.to_scalar_pair();
                    self.visit_scalar(a, a_layout)?;
                    self.visit_scalar(b, b_layout)?;
                }
            }
            Abi::Vector { .. } => {
                // No checks here, we assume layout computation gets this right.
                // (This is harder to check since Miri does not represent these as `Immediate`. We
                // also cannot use field projections since this might be a newtype around a vector.)
            }
            Abi::Aggregate { .. } => {
                // Nothing to do.
            }
        }

        Ok(())
    }

    fn visit_aggregate(
        &mut self,
        op: &OpTy<'tcx, M::Provenance>,
        fields: impl Iterator<Item = InterpResult<'tcx, Self::V>>,
    ) -> InterpResult<'tcx> {
        match op.layout.ty.kind() {
            ty::Str => {
                let mplace = op.assert_mem_place(); // strings are unsized and hence never immediate
                let len = mplace.len(self.ecx)?;
                try_validation!(
                    self.ecx.read_bytes_ptr_strip_provenance(mplace.ptr, Size::from_bytes(len)),
                    self.path,
                    InvalidUninitBytes(..) => { "uninitialized data in `str`" },
                );
            }
            ty::Array(tys, ..) | ty::Slice(tys)
                // This optimization applies for types that can hold arbitrary bytes (such as
                // integer and floating point types) or for structs or tuples with no fields.
                // FIXME(wesleywiser) This logic could be extended further to arbitrary structs
                // or tuples made up of integer/floating point types or inhabited ZSTs with no
                // padding.
                if matches!(tys.kind(), ty::Int(..) | ty::Uint(..) | ty::Float(..))
                =>
            {
                // Optimized handling for arrays of integer/float type.

                // This is the length of the array/slice.
                let len = op.len(self.ecx)?;
                // This is the element type size.
                let layout = self.ecx.layout_of(*tys)?;
                // This is the size in bytes of the whole array. (This checks for overflow.)
                let size = layout.size * len;
                // If the size is 0, there is nothing to check.
                // (`size` can only be 0 of `len` is 0, and empty arrays are always valid.)
                if size == Size::ZERO {
                    return Ok(());
                }
                // Now that we definitely have a non-ZST array, we know it lives in memory.
                let mplace = match op.try_as_mplace() {
                    Ok(mplace) => mplace,
                    Err(imm) => match *imm {
                        Immediate::Uninit =>
                            throw_validation_failure!(self.path, { "uninitialized bytes" }),
                        Immediate::Scalar(..) | Immediate::ScalarPair(..) =>
                            bug!("arrays/slices can never have Scalar/ScalarPair layout"),
                    }
                };

                // Optimization: we just check the entire range at once.
                // NOTE: Keep this in sync with the handling of integer and float
                // types above, in `visit_primitive`.
                // In run-time mode, we accept pointers in here.  This is actually more
                // permissive than a per-element check would be, e.g., we accept
                // a &[u8] that contains a pointer even though bytewise checking would
                // reject it.  However, that's good: We don't inherently want
                // to reject those pointers, we just do not have the machinery to
                // talk about parts of a pointer.
                // We also accept uninit, for consistency with the slow path.
                let alloc = self.ecx.get_ptr_alloc(mplace.ptr, size, mplace.align)?.expect("we already excluded size 0");

                match alloc.get_bytes_strip_provenance() {
                    // In the happy case, we needn't check anything else.
                    Ok(_) => {}
                    // Some error happened, try to provide a more detailed description.
                    Err(err) => {
                        // For some errors we might be able to provide extra information.
                        // (This custom logic does not fit the `try_validation!` macro.)
                        match err.kind() {
                            err_ub!(InvalidUninitBytes(Some((_alloc_id, access)))) => {
                                // Some byte was uninitialized, determine which
                                // element that byte belongs to so we can
                                // provide an index.
                                let i = usize::try_from(
                                    access.uninit.start.bytes() / layout.size.bytes(),
                                )
                                .unwrap();
                                self.path.push(PathElem::ArrayElem(i));

                                throw_validation_failure!(self.path, { "uninitialized bytes" })
                            }

                            // Propagate upwards (that will also check for unexpected errors).
                            _ => return Err(err),
                        }
                    }
                }
            }
            // Fast path for arrays and slices of ZSTs. We only need to check a single ZST element
            // of an array and not all of them, because there's only a single value of a specific
            // ZST type, so either validation fails for all elements or none.
            ty::Array(tys, ..) | ty::Slice(tys) if self.ecx.layout_of(*tys)?.is_zst() => {
                // Validate just the first element (if any).
                self.walk_aggregate(op, fields.take(1))?
            }
            _ => {
                self.walk_aggregate(op, fields)? // default handler
            }
        }
        Ok(())
    }
}

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
    fn validate_operand_internal(
        &self,
        op: &OpTy<'tcx, M::Provenance>,
        path: Vec<PathElem>,
        ref_tracking: Option<&mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>>,
        ctfe_mode: Option<CtfeValidationMode>,
    ) -> InterpResult<'tcx> {
        trace!("validate_operand_internal: {:?}, {:?}", *op, op.layout.ty);

        // Construct a visitor
        let mut visitor = ValidityVisitor { path, ref_tracking, ctfe_mode, ecx: self };

        // Run it.
        match visitor.visit_value(&op) {
            Ok(()) => Ok(()),
            // Pass through validation failures.
            Err(err) if matches!(err.kind(), err_ub!(ValidationFailure { .. })) => Err(err),
            // Complain about any other kind of UB error -- those are bad because we'd like to
            // report them in a way that shows *where* in the value the issue lies.
            Err(err) if matches!(err.kind(), InterpError::UndefinedBehavior(_)) => {
                err.print_backtrace();
                bug!("Unexpected Undefined Behavior error during validation: {}", err);
            }
            // Pass through everything else.
            Err(err) => Err(err),
        }
    }

    /// This function checks the data at `op` to be const-valid.
    /// `op` is assumed to cover valid memory if it is an indirect operand.
    /// It will error if the bits at the destination do not match the ones described by the layout.
    ///
    /// `ref_tracking` is used to record references that we encounter so that they
    /// can be checked recursively by an outside driving loop.
    ///
    /// `constant` controls whether this must satisfy the rules for constants:
    /// - no pointers to statics.
    /// - no `UnsafeCell` or non-ZST `&mut`.
    #[inline(always)]
    pub fn const_validate_operand(
        &self,
        op: &OpTy<'tcx, M::Provenance>,
        path: Vec<PathElem>,
        ref_tracking: &mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>,
        ctfe_mode: CtfeValidationMode,
    ) -> InterpResult<'tcx> {
        self.validate_operand_internal(op, path, Some(ref_tracking), Some(ctfe_mode))
    }

    /// This function checks the data at `op` to be runtime-valid.
    /// `op` is assumed to cover valid memory if it is an indirect operand.
    /// It will error if the bits at the destination do not match the ones described by the layout.
    #[inline(always)]
    pub fn validate_operand(&self, op: &OpTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
        // Note that we *could* actually be in CTFE here with `-Zextra-const-ub-checks`, but it's
        // still correct to not use `ctfe_mode`: that mode is for validation of the final constant
        // value, it rules out things like `UnsafeCell` in awkward places. It also can make checking
        // recurse through references which, for now, we don't want here, either.
        self.validate_operand_internal(op, vec![], None, None)
    }
}