1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
|
//! Conversion from AST representation of types to the `ty.rs` representation.
//! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
//! instance of `AstConv`.
mod errors;
mod generics;
use crate::bounds::Bounds;
use crate::collect::HirPlaceholderCollector;
use crate::errors::{
AmbiguousLifetimeBound, MultipleRelaxedDefaultBounds, TraitObjectDeclaredWithNoTraits,
TypeofReservedKeywordUsed, ValueOfAssociatedStructAlreadySpecified,
};
use crate::middle::resolve_lifetime as rl;
use crate::require_c_abi_if_c_variadic;
use rustc_ast::TraitObjectSyntax;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::{
struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, FatalError,
MultiSpan,
};
use rustc_hir as hir;
use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::{walk_generics, Visitor as _};
use rustc_hir::{GenericArg, GenericArgs, OpaqueTyOrigin};
use rustc_middle::middle::stability::AllowUnstable;
use rustc_middle::ty::subst::{self, GenericArgKind, InternalSubsts, SubstsRef};
use rustc_middle::ty::DynKind;
use rustc_middle::ty::GenericParamDefKind;
use rustc_middle::ty::{
self, Const, DefIdTree, EarlyBinder, IsSuggestable, Ty, TyCtxt, TypeVisitable,
};
use rustc_session::lint::builtin::{AMBIGUOUS_ASSOCIATED_ITEMS, BARE_TRAIT_OBJECTS};
use rustc_span::edition::Edition;
use rustc_span::lev_distance::find_best_match_for_name;
use rustc_span::symbol::{kw, Ident, Symbol};
use rustc_span::{sym, Span};
use rustc_target::spec::abi;
use rustc_trait_selection::traits;
use rustc_trait_selection::traits::astconv_object_safety_violations;
use rustc_trait_selection::traits::error_reporting::{
report_object_safety_error, suggestions::NextTypeParamName,
};
use rustc_trait_selection::traits::wf::object_region_bounds;
use smallvec::{smallvec, SmallVec};
use std::collections::BTreeSet;
use std::slice;
#[derive(Debug)]
pub struct PathSeg(pub DefId, pub usize);
pub trait AstConv<'tcx> {
fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
fn item_def_id(&self) -> DefId;
/// Returns predicates in scope of the form `X: Foo<T>`, where `X`
/// is a type parameter `X` with the given id `def_id` and T
/// matches `assoc_name`. This is a subset of the full set of
/// predicates.
///
/// This is used for one specific purpose: resolving "short-hand"
/// associated type references like `T::Item`. In principle, we
/// would do that by first getting the full set of predicates in
/// scope and then filtering down to find those that apply to `T`,
/// but this can lead to cycle errors. The problem is that we have
/// to do this resolution *in order to create the predicates in
/// the first place*. Hence, we have this "special pass".
fn get_type_parameter_bounds(
&self,
span: Span,
def_id: DefId,
assoc_name: Ident,
) -> ty::GenericPredicates<'tcx>;
/// Returns the lifetime to use when a lifetime is omitted (and not elided).
fn re_infer(&self, param: Option<&ty::GenericParamDef>, span: Span)
-> Option<ty::Region<'tcx>>;
/// Returns the type to use when a type is omitted.
fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;
/// Returns `true` if `_` is allowed in type signatures in the current context.
fn allow_ty_infer(&self) -> bool;
/// Returns the const to use when a const is omitted.
fn ct_infer(
&self,
ty: Ty<'tcx>,
param: Option<&ty::GenericParamDef>,
span: Span,
) -> Const<'tcx>;
/// Projecting an associated type from a (potentially)
/// higher-ranked trait reference is more complicated, because of
/// the possibility of late-bound regions appearing in the
/// associated type binding. This is not legal in function
/// signatures for that reason. In a function body, we can always
/// handle it because we can use inference variables to remove the
/// late-bound regions.
fn projected_ty_from_poly_trait_ref(
&self,
span: Span,
item_def_id: DefId,
item_segment: &hir::PathSegment<'_>,
poly_trait_ref: ty::PolyTraitRef<'tcx>,
) -> Ty<'tcx>;
/// Normalize an associated type coming from the user.
///
/// This should only be used by astconv. Use `FnCtxt::normalize`
/// or `ObligationCtxt::normalize` in downstream crates.
fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
/// Invoked when we encounter an error from some prior pass
/// (e.g., resolve) that is translated into a ty-error. This is
/// used to help suppress derived errors typeck might otherwise
/// report.
fn set_tainted_by_errors(&self, e: ErrorGuaranteed);
fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
}
#[derive(Debug)]
struct ConvertedBinding<'a, 'tcx> {
hir_id: hir::HirId,
item_name: Ident,
kind: ConvertedBindingKind<'a, 'tcx>,
gen_args: &'a GenericArgs<'a>,
span: Span,
}
#[derive(Debug)]
enum ConvertedBindingKind<'a, 'tcx> {
Equality(ty::Term<'tcx>),
Constraint(&'a [hir::GenericBound<'a>]),
}
/// New-typed boolean indicating whether explicit late-bound lifetimes
/// are present in a set of generic arguments.
///
/// For example if we have some method `fn f<'a>(&'a self)` implemented
/// for some type `T`, although `f` is generic in the lifetime `'a`, `'a`
/// is late-bound so should not be provided explicitly. Thus, if `f` is
/// instantiated with some generic arguments providing `'a` explicitly,
/// we taint those arguments with `ExplicitLateBound::Yes` so that we
/// can provide an appropriate diagnostic later.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum ExplicitLateBound {
Yes,
No,
}
#[derive(Copy, Clone, PartialEq)]
pub enum IsMethodCall {
Yes,
No,
}
/// Denotes the "position" of a generic argument, indicating if it is a generic type,
/// generic function or generic method call.
#[derive(Copy, Clone, PartialEq)]
pub(crate) enum GenericArgPosition {
Type,
Value, // e.g., functions
MethodCall,
}
/// A marker denoting that the generic arguments that were
/// provided did not match the respective generic parameters.
#[derive(Clone, Default, Debug)]
pub struct GenericArgCountMismatch {
/// Indicates whether a fatal error was reported (`Some`), or just a lint (`None`).
pub reported: Option<ErrorGuaranteed>,
/// A list of spans of arguments provided that were not valid.
pub invalid_args: Vec<Span>,
}
/// Decorates the result of a generic argument count mismatch
/// check with whether explicit late bounds were provided.
#[derive(Clone, Debug)]
pub struct GenericArgCountResult {
pub explicit_late_bound: ExplicitLateBound,
pub correct: Result<(), GenericArgCountMismatch>,
}
pub trait CreateSubstsForGenericArgsCtxt<'a, 'tcx> {
fn args_for_def_id(&mut self, def_id: DefId) -> (Option<&'a GenericArgs<'a>>, bool);
fn provided_kind(
&mut self,
param: &ty::GenericParamDef,
arg: &GenericArg<'_>,
) -> subst::GenericArg<'tcx>;
fn inferred_kind(
&mut self,
substs: Option<&[subst::GenericArg<'tcx>]>,
param: &ty::GenericParamDef,
infer_args: bool,
) -> subst::GenericArg<'tcx>;
}
impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
#[instrument(level = "debug", skip(self), ret)]
pub fn ast_region_to_region(
&self,
lifetime: &hir::Lifetime,
def: Option<&ty::GenericParamDef>,
) -> ty::Region<'tcx> {
let tcx = self.tcx();
let lifetime_name = |def_id| tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id));
match tcx.named_region(lifetime.hir_id) {
Some(rl::Region::Static) => tcx.lifetimes.re_static,
Some(rl::Region::LateBound(debruijn, index, def_id)) => {
let name = lifetime_name(def_id.expect_local());
let br = ty::BoundRegion {
var: ty::BoundVar::from_u32(index),
kind: ty::BrNamed(def_id, name),
};
tcx.mk_region(ty::ReLateBound(debruijn, br))
}
Some(rl::Region::EarlyBound(def_id)) => {
let name = tcx.hir().ty_param_name(def_id.expect_local());
let item_def_id = tcx.hir().ty_param_owner(def_id.expect_local());
let generics = tcx.generics_of(item_def_id);
let index = generics.param_def_id_to_index[&def_id];
tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { def_id, index, name }))
}
Some(rl::Region::Free(scope, id)) => {
let name = lifetime_name(id.expect_local());
tcx.mk_region(ty::ReFree(ty::FreeRegion {
scope,
bound_region: ty::BrNamed(id, name),
}))
// (*) -- not late-bound, won't change
}
None => {
self.re_infer(def, lifetime.ident.span).unwrap_or_else(|| {
debug!(?lifetime, "unelided lifetime in signature");
// This indicates an illegal lifetime
// elision. `resolve_lifetime` should have
// reported an error in this case -- but if
// not, let's error out.
tcx.sess.delay_span_bug(lifetime.ident.span, "unelided lifetime in signature");
// Supply some dummy value. We don't have an
// `re_error`, annoyingly, so use `'static`.
tcx.lifetimes.re_static
})
}
}
}
/// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
/// returns an appropriate set of substitutions for this particular reference to `I`.
pub fn ast_path_substs_for_ty(
&self,
span: Span,
def_id: DefId,
item_segment: &hir::PathSegment<'_>,
) -> SubstsRef<'tcx> {
let (substs, _) = self.create_substs_for_ast_path(
span,
def_id,
&[],
item_segment,
item_segment.args(),
item_segment.infer_args,
None,
ty::BoundConstness::NotConst,
);
if let Some(b) = item_segment.args().bindings.first() {
Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
}
substs
}
/// Given the type/lifetime/const arguments provided to some path (along with
/// an implicit `Self`, if this is a trait reference), returns the complete
/// set of substitutions. This may involve applying defaulted type parameters.
/// Constraints on associated types are created from `create_assoc_bindings_for_generic_args`.
///
/// Example:
///
/// ```ignore (illustrative)
/// T: std::ops::Index<usize, Output = u32>
/// // ^1 ^^^^^^^^^^^^^^2 ^^^^3 ^^^^^^^^^^^4
/// ```
///
/// 1. The `self_ty` here would refer to the type `T`.
/// 2. The path in question is the path to the trait `std::ops::Index`,
/// which will have been resolved to a `def_id`
/// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
/// parameters are returned in the `SubstsRef`, the associated type bindings like
/// `Output = u32` are returned from `create_assoc_bindings_for_generic_args`.
///
/// Note that the type listing given here is *exactly* what the user provided.
///
/// For (generic) associated types
///
/// ```ignore (illustrative)
/// <Vec<u8> as Iterable<u8>>::Iter::<'a>
/// ```
///
/// We have the parent substs are the substs for the parent trait:
/// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
/// type itself: `['a]`. The returned `SubstsRef` concatenates these two
/// lists: `[Vec<u8>, u8, 'a]`.
#[instrument(level = "debug", skip(self, span), ret)]
fn create_substs_for_ast_path<'a>(
&self,
span: Span,
def_id: DefId,
parent_substs: &[subst::GenericArg<'tcx>],
seg: &hir::PathSegment<'_>,
generic_args: &'a hir::GenericArgs<'_>,
infer_args: bool,
self_ty: Option<Ty<'tcx>>,
constness: ty::BoundConstness,
) -> (SubstsRef<'tcx>, GenericArgCountResult) {
// If the type is parameterized by this region, then replace this
// region with the current anon region binding (in other words,
// whatever & would get replaced with).
let tcx = self.tcx();
let generics = tcx.generics_of(def_id);
debug!("generics: {:?}", generics);
if generics.has_self {
if generics.parent.is_some() {
// The parent is a trait so it should have at least one subst
// for the `Self` type.
assert!(!parent_substs.is_empty())
} else {
// This item (presumably a trait) needs a self-type.
assert!(self_ty.is_some());
}
} else {
assert!(self_ty.is_none());
}
let arg_count = Self::check_generic_arg_count(
tcx,
span,
def_id,
seg,
generics,
generic_args,
GenericArgPosition::Type,
self_ty.is_some(),
infer_args,
);
// Skip processing if type has no generic parameters.
// Traits always have `Self` as a generic parameter, which means they will not return early
// here and so associated type bindings will be handled regardless of whether there are any
// non-`Self` generic parameters.
if generics.params.is_empty() {
return (tcx.intern_substs(parent_substs), arg_count);
}
struct SubstsForAstPathCtxt<'a, 'tcx> {
astconv: &'a (dyn AstConv<'tcx> + 'a),
def_id: DefId,
generic_args: &'a GenericArgs<'a>,
span: Span,
inferred_params: Vec<Span>,
infer_args: bool,
}
impl<'a, 'tcx> CreateSubstsForGenericArgsCtxt<'a, 'tcx> for SubstsForAstPathCtxt<'a, 'tcx> {
fn args_for_def_id(&mut self, did: DefId) -> (Option<&'a GenericArgs<'a>>, bool) {
if did == self.def_id {
(Some(self.generic_args), self.infer_args)
} else {
// The last component of this tuple is unimportant.
(None, false)
}
}
fn provided_kind(
&mut self,
param: &ty::GenericParamDef,
arg: &GenericArg<'_>,
) -> subst::GenericArg<'tcx> {
let tcx = self.astconv.tcx();
let mut handle_ty_args = |has_default, ty: &hir::Ty<'_>| {
if has_default {
tcx.check_optional_stability(
param.def_id,
Some(arg.hir_id()),
arg.span(),
None,
AllowUnstable::No,
|_, _| {
// Default generic parameters may not be marked
// with stability attributes, i.e. when the
// default parameter was defined at the same time
// as the rest of the type. As such, we ignore missing
// stability attributes.
},
);
}
if let (hir::TyKind::Infer, false) = (&ty.kind, self.astconv.allow_ty_infer()) {
self.inferred_params.push(ty.span);
tcx.ty_error().into()
} else {
self.astconv.ast_ty_to_ty(ty).into()
}
};
match (¶m.kind, arg) {
(GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
self.astconv.ast_region_to_region(lt, Some(param)).into()
}
(&GenericParamDefKind::Type { has_default, .. }, GenericArg::Type(ty)) => {
handle_ty_args(has_default, ty)
}
(&GenericParamDefKind::Type { has_default, .. }, GenericArg::Infer(inf)) => {
handle_ty_args(has_default, &inf.to_ty())
}
(GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
ty::Const::from_opt_const_arg_anon_const(
tcx,
ty::WithOptConstParam {
did: ct.value.def_id,
const_param_did: Some(param.def_id),
},
)
.into()
}
(&GenericParamDefKind::Const { .. }, hir::GenericArg::Infer(inf)) => {
let ty = tcx.at(self.span).type_of(param.def_id);
if self.astconv.allow_ty_infer() {
self.astconv.ct_infer(ty, Some(param), inf.span).into()
} else {
self.inferred_params.push(inf.span);
tcx.const_error(ty).into()
}
}
_ => unreachable!(),
}
}
fn inferred_kind(
&mut self,
substs: Option<&[subst::GenericArg<'tcx>]>,
param: &ty::GenericParamDef,
infer_args: bool,
) -> subst::GenericArg<'tcx> {
let tcx = self.astconv.tcx();
match param.kind {
GenericParamDefKind::Lifetime => self
.astconv
.re_infer(Some(param), self.span)
.unwrap_or_else(|| {
debug!(?param, "unelided lifetime in signature");
// This indicates an illegal lifetime in a non-assoc-trait position
tcx.sess.delay_span_bug(self.span, "unelided lifetime in signature");
// Supply some dummy value. We don't have an
// `re_error`, annoyingly, so use `'static`.
tcx.lifetimes.re_static
})
.into(),
GenericParamDefKind::Type { has_default, .. } => {
if !infer_args && has_default {
// No type parameter provided, but a default exists.
let substs = substs.unwrap();
if substs.iter().any(|arg| match arg.unpack() {
GenericArgKind::Type(ty) => ty.references_error(),
_ => false,
}) {
// Avoid ICE #86756 when type error recovery goes awry.
return tcx.ty_error().into();
}
self.astconv
.normalize_ty(
self.span,
EarlyBinder(tcx.at(self.span).type_of(param.def_id))
.subst(tcx, substs),
)
.into()
} else if infer_args {
self.astconv.ty_infer(Some(param), self.span).into()
} else {
// We've already errored above about the mismatch.
tcx.ty_error().into()
}
}
GenericParamDefKind::Const { has_default } => {
let ty = tcx.at(self.span).type_of(param.def_id);
if ty.references_error() {
return tcx.const_error(ty).into();
}
if !infer_args && has_default {
tcx.bound_const_param_default(param.def_id)
.subst(tcx, substs.unwrap())
.into()
} else {
if infer_args {
self.astconv.ct_infer(ty, Some(param), self.span).into()
} else {
// We've already errored above about the mismatch.
tcx.const_error(ty).into()
}
}
}
}
}
}
let mut substs_ctx = SubstsForAstPathCtxt {
astconv: self,
def_id,
span,
generic_args,
inferred_params: vec![],
infer_args,
};
let substs = Self::create_substs_for_generic_args(
tcx,
def_id,
parent_substs,
self_ty.is_some(),
self_ty,
&arg_count,
&mut substs_ctx,
);
if let ty::BoundConstness::ConstIfConst = constness
&& generics.has_self && !tcx.has_attr(def_id, sym::const_trait)
{
tcx.sess.emit_err(crate::errors::ConstBoundForNonConstTrait { span } );
}
(substs, arg_count)
}
fn create_assoc_bindings_for_generic_args<'a>(
&self,
generic_args: &'a hir::GenericArgs<'_>,
) -> Vec<ConvertedBinding<'a, 'tcx>> {
// Convert associated-type bindings or constraints into a separate vector.
// Example: Given this:
//
// T: Iterator<Item = u32>
//
// The `T` is passed in as a self-type; the `Item = u32` is
// not a "type parameter" of the `Iterator` trait, but rather
// a restriction on `<T as Iterator>::Item`, so it is passed
// back separately.
let assoc_bindings = generic_args
.bindings
.iter()
.map(|binding| {
let kind = match binding.kind {
hir::TypeBindingKind::Equality { ref term } => match term {
hir::Term::Ty(ref ty) => {
ConvertedBindingKind::Equality(self.ast_ty_to_ty(ty).into())
}
hir::Term::Const(ref c) => {
let c = Const::from_anon_const(self.tcx(), c.def_id);
ConvertedBindingKind::Equality(c.into())
}
},
hir::TypeBindingKind::Constraint { ref bounds } => {
ConvertedBindingKind::Constraint(bounds)
}
};
ConvertedBinding {
hir_id: binding.hir_id,
item_name: binding.ident,
kind,
gen_args: binding.gen_args,
span: binding.span,
}
})
.collect();
assoc_bindings
}
pub fn create_substs_for_associated_item(
&self,
span: Span,
item_def_id: DefId,
item_segment: &hir::PathSegment<'_>,
parent_substs: SubstsRef<'tcx>,
) -> SubstsRef<'tcx> {
debug!(
"create_substs_for_associated_item(span: {:?}, item_def_id: {:?}, item_segment: {:?}",
span, item_def_id, item_segment
);
let (args, _) = self.create_substs_for_ast_path(
span,
item_def_id,
parent_substs,
item_segment,
item_segment.args(),
item_segment.infer_args,
None,
ty::BoundConstness::NotConst,
);
if let Some(b) = item_segment.args().bindings.first() {
Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
}
args
}
/// Instantiates the path for the given trait reference, assuming that it's
/// bound to a valid trait type. Returns the `DefId` of the defining trait.
/// The type _cannot_ be a type other than a trait type.
///
/// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
/// are disallowed. Otherwise, they are pushed onto the vector given.
pub fn instantiate_mono_trait_ref(
&self,
trait_ref: &hir::TraitRef<'_>,
self_ty: Ty<'tcx>,
constness: ty::BoundConstness,
) -> ty::TraitRef<'tcx> {
self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1.iter(), |_| {});
self.ast_path_to_mono_trait_ref(
trait_ref.path.span,
trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
self_ty,
trait_ref.path.segments.last().unwrap(),
true,
constness,
)
}
fn instantiate_poly_trait_ref_inner(
&self,
hir_id: hir::HirId,
span: Span,
binding_span: Option<Span>,
constness: ty::BoundConstness,
bounds: &mut Bounds<'tcx>,
speculative: bool,
trait_ref_span: Span,
trait_def_id: DefId,
trait_segment: &hir::PathSegment<'_>,
args: &GenericArgs<'_>,
infer_args: bool,
self_ty: Ty<'tcx>,
) -> GenericArgCountResult {
let (substs, arg_count) = self.create_substs_for_ast_path(
trait_ref_span,
trait_def_id,
&[],
trait_segment,
args,
infer_args,
Some(self_ty),
constness,
);
let tcx = self.tcx();
let bound_vars = tcx.late_bound_vars(hir_id);
debug!(?bound_vars);
let assoc_bindings = self.create_assoc_bindings_for_generic_args(args);
let poly_trait_ref =
ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);
debug!(?poly_trait_ref, ?assoc_bindings);
bounds.trait_bounds.push((poly_trait_ref, span, constness));
let mut dup_bindings = FxHashMap::default();
for binding in &assoc_bindings {
// Specify type to assert that error was already reported in `Err` case.
let _: Result<_, ErrorGuaranteed> = self.add_predicates_for_ast_type_binding(
hir_id,
poly_trait_ref,
binding,
bounds,
speculative,
&mut dup_bindings,
binding_span.unwrap_or(binding.span),
constness,
);
// Okay to ignore `Err` because of `ErrorGuaranteed` (see above).
}
arg_count
}
/// Given a trait bound like `Debug`, applies that trait bound the given self-type to construct
/// a full trait reference. The resulting trait reference is returned. This may also generate
/// auxiliary bounds, which are added to `bounds`.
///
/// Example:
///
/// ```ignore (illustrative)
/// poly_trait_ref = Iterator<Item = u32>
/// self_ty = Foo
/// ```
///
/// this would return `Foo: Iterator` and add `<Foo as Iterator>::Item = u32` into `bounds`.
///
/// **A note on binders:** against our usual convention, there is an implied bounder around
/// the `self_ty` and `poly_trait_ref` parameters here. So they may reference bound regions.
/// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
/// where `'a` is a bound region at depth 0. Similarly, the `poly_trait_ref` would be
/// `Bar<'a>`. The returned poly-trait-ref will have this binder instantiated explicitly,
/// however.
#[instrument(level = "debug", skip(self, span, constness, bounds, speculative))]
pub(crate) fn instantiate_poly_trait_ref(
&self,
trait_ref: &hir::TraitRef<'_>,
span: Span,
constness: ty::BoundConstness,
self_ty: Ty<'tcx>,
bounds: &mut Bounds<'tcx>,
speculative: bool,
) -> GenericArgCountResult {
let hir_id = trait_ref.hir_ref_id;
let binding_span = None;
let trait_ref_span = trait_ref.path.span;
let trait_def_id = trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise());
let trait_segment = trait_ref.path.segments.last().unwrap();
let args = trait_segment.args();
let infer_args = trait_segment.infer_args;
self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1.iter(), |_| {});
self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment, false);
self.instantiate_poly_trait_ref_inner(
hir_id,
span,
binding_span,
constness,
bounds,
speculative,
trait_ref_span,
trait_def_id,
trait_segment,
args,
infer_args,
self_ty,
)
}
pub(crate) fn instantiate_lang_item_trait_ref(
&self,
lang_item: hir::LangItem,
span: Span,
hir_id: hir::HirId,
args: &GenericArgs<'_>,
self_ty: Ty<'tcx>,
bounds: &mut Bounds<'tcx>,
) {
let binding_span = Some(span);
let constness = ty::BoundConstness::NotConst;
let speculative = false;
let trait_ref_span = span;
let trait_def_id = self.tcx().require_lang_item(lang_item, Some(span));
let trait_segment = &hir::PathSegment::invalid();
let infer_args = false;
self.instantiate_poly_trait_ref_inner(
hir_id,
span,
binding_span,
constness,
bounds,
speculative,
trait_ref_span,
trait_def_id,
trait_segment,
args,
infer_args,
self_ty,
);
}
fn ast_path_to_mono_trait_ref(
&self,
span: Span,
trait_def_id: DefId,
self_ty: Ty<'tcx>,
trait_segment: &hir::PathSegment<'_>,
is_impl: bool,
constness: ty::BoundConstness,
) -> ty::TraitRef<'tcx> {
let (substs, _) = self.create_substs_for_ast_trait_ref(
span,
trait_def_id,
self_ty,
trait_segment,
is_impl,
constness,
);
if let Some(b) = trait_segment.args().bindings.first() {
Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
}
ty::TraitRef::new(trait_def_id, substs)
}
#[instrument(level = "debug", skip(self, span))]
fn create_substs_for_ast_trait_ref<'a>(
&self,
span: Span,
trait_def_id: DefId,
self_ty: Ty<'tcx>,
trait_segment: &'a hir::PathSegment<'a>,
is_impl: bool,
constness: ty::BoundConstness,
) -> (SubstsRef<'tcx>, GenericArgCountResult) {
self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment, is_impl);
self.create_substs_for_ast_path(
span,
trait_def_id,
&[],
trait_segment,
trait_segment.args(),
trait_segment.infer_args,
Some(self_ty),
constness,
)
}
fn trait_defines_associated_type_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
self.tcx()
.associated_items(trait_def_id)
.find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, trait_def_id)
.is_some()
}
fn trait_defines_associated_const_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
self.tcx()
.associated_items(trait_def_id)
.find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Const, trait_def_id)
.is_some()
}
/// Sets `implicitly_sized` to true on `Bounds` if necessary
pub(crate) fn add_implicitly_sized<'hir>(
&self,
bounds: &mut Bounds<'hir>,
ast_bounds: &'hir [hir::GenericBound<'hir>],
self_ty_where_predicates: Option<(LocalDefId, &'hir [hir::WherePredicate<'hir>])>,
span: Span,
) {
let tcx = self.tcx();
// Try to find an unbound in bounds.
let mut unbound = None;
let mut search_bounds = |ast_bounds: &'hir [hir::GenericBound<'hir>]| {
for ab in ast_bounds {
if let hir::GenericBound::Trait(ptr, hir::TraitBoundModifier::Maybe) = ab {
if unbound.is_none() {
unbound = Some(&ptr.trait_ref);
} else {
tcx.sess.emit_err(MultipleRelaxedDefaultBounds { span });
}
}
}
};
search_bounds(ast_bounds);
if let Some((self_ty, where_clause)) = self_ty_where_predicates {
for clause in where_clause {
if let hir::WherePredicate::BoundPredicate(pred) = clause {
if pred.is_param_bound(self_ty.to_def_id()) {
search_bounds(pred.bounds);
}
}
}
}
let sized_def_id = tcx.lang_items().sized_trait();
match (&sized_def_id, unbound) {
(Some(sized_def_id), Some(tpb))
if tpb.path.res == Res::Def(DefKind::Trait, *sized_def_id) =>
{
// There was in fact a `?Sized` bound, return without doing anything
return;
}
(_, Some(_)) => {
// There was a `?Trait` bound, but it was not `?Sized`; warn.
tcx.sess.span_warn(
span,
"default bound relaxed for a type parameter, but \
this does nothing because the given bound is not \
a default; only `?Sized` is supported",
);
// Otherwise, add implicitly sized if `Sized` is available.
}
_ => {
// There was no `?Sized` bound; add implicitly sized if `Sized` is available.
}
}
if sized_def_id.is_none() {
// No lang item for `Sized`, so we can't add it as a bound.
return;
}
bounds.implicitly_sized = Some(span);
}
/// This helper takes a *converted* parameter type (`param_ty`)
/// and an *unconverted* list of bounds:
///
/// ```text
/// fn foo<T: Debug>
/// ^ ^^^^^ `ast_bounds` parameter, in HIR form
/// |
/// `param_ty`, in ty form
/// ```
///
/// It adds these `ast_bounds` into the `bounds` structure.
///
/// **A note on binders:** there is an implied binder around
/// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
/// for more details.
#[instrument(level = "debug", skip(self, ast_bounds, bounds))]
pub(crate) fn add_bounds<'hir, I: Iterator<Item = &'hir hir::GenericBound<'hir>>>(
&self,
param_ty: Ty<'tcx>,
ast_bounds: I,
bounds: &mut Bounds<'tcx>,
bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
) {
for ast_bound in ast_bounds {
match ast_bound {
hir::GenericBound::Trait(poly_trait_ref, modifier) => {
let constness = match modifier {
hir::TraitBoundModifier::MaybeConst => ty::BoundConstness::ConstIfConst,
hir::TraitBoundModifier::None => ty::BoundConstness::NotConst,
hir::TraitBoundModifier::Maybe => continue,
};
let _ = self.instantiate_poly_trait_ref(
&poly_trait_ref.trait_ref,
poly_trait_ref.span,
constness,
param_ty,
bounds,
false,
);
}
&hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => {
self.instantiate_lang_item_trait_ref(
lang_item, span, hir_id, args, param_ty, bounds,
);
}
hir::GenericBound::Outlives(lifetime) => {
let region = self.ast_region_to_region(lifetime, None);
bounds.region_bounds.push((
ty::Binder::bind_with_vars(region, bound_vars),
lifetime.ident.span,
));
}
}
}
}
/// Translates a list of bounds from the HIR into the `Bounds` data structure.
/// The self-type for the bounds is given by `param_ty`.
///
/// Example:
///
/// ```ignore (illustrative)
/// fn foo<T: Bar + Baz>() { }
/// // ^ ^^^^^^^^^ ast_bounds
/// // param_ty
/// ```
///
/// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
/// considered `Sized` unless there is an explicit `?Sized` bound. This would be true in the
/// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
///
/// `span` should be the declaration size of the parameter.
pub(crate) fn compute_bounds(
&self,
param_ty: Ty<'tcx>,
ast_bounds: &[hir::GenericBound<'_>],
) -> Bounds<'tcx> {
self.compute_bounds_inner(param_ty, ast_bounds)
}
/// Convert the bounds in `ast_bounds` that refer to traits which define an associated type
/// named `assoc_name` into ty::Bounds. Ignore the rest.
pub(crate) fn compute_bounds_that_match_assoc_type(
&self,
param_ty: Ty<'tcx>,
ast_bounds: &[hir::GenericBound<'_>],
assoc_name: Ident,
) -> Bounds<'tcx> {
let mut result = Vec::new();
for ast_bound in ast_bounds {
if let Some(trait_ref) = ast_bound.trait_ref()
&& let Some(trait_did) = trait_ref.trait_def_id()
&& self.tcx().trait_may_define_assoc_type(trait_did, assoc_name)
{
result.push(ast_bound.clone());
}
}
self.compute_bounds_inner(param_ty, &result)
}
fn compute_bounds_inner(
&self,
param_ty: Ty<'tcx>,
ast_bounds: &[hir::GenericBound<'_>],
) -> Bounds<'tcx> {
let mut bounds = Bounds::default();
self.add_bounds(param_ty, ast_bounds.iter(), &mut bounds, ty::List::empty());
debug!(?bounds);
bounds
}
/// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
/// onto `bounds`.
///
/// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
/// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
/// the binder (e.g., `&'a u32`) and hence may reference bound regions.
#[instrument(level = "debug", skip(self, bounds, speculative, dup_bindings, path_span))]
fn add_predicates_for_ast_type_binding(
&self,
hir_ref_id: hir::HirId,
trait_ref: ty::PolyTraitRef<'tcx>,
binding: &ConvertedBinding<'_, 'tcx>,
bounds: &mut Bounds<'tcx>,
speculative: bool,
dup_bindings: &mut FxHashMap<DefId, Span>,
path_span: Span,
constness: ty::BoundConstness,
) -> Result<(), ErrorGuaranteed> {
// Given something like `U: SomeTrait<T = X>`, we want to produce a
// predicate like `<U as SomeTrait>::T = X`. This is somewhat
// subtle in the event that `T` is defined in a supertrait of
// `SomeTrait`, because in that case we need to upcast.
//
// That is, consider this case:
//
// ```
// trait SubTrait: SuperTrait<i32> { }
// trait SuperTrait<A> { type T; }
//
// ... B: SubTrait<T = foo> ...
// ```
//
// We want to produce `<B as SuperTrait<i32>>::T == foo`.
let tcx = self.tcx();
let candidate =
if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
// Simple case: X is defined in the current trait.
trait_ref
} else {
// Otherwise, we have to walk through the supertraits to find
// those that do.
self.one_bound_for_assoc_type(
|| traits::supertraits(tcx, trait_ref),
|| trait_ref.print_only_trait_path().to_string(),
binding.item_name,
path_span,
|| match binding.kind {
ConvertedBindingKind::Equality(ty) => Some(ty.to_string()),
_ => None,
},
)?
};
let (assoc_ident, def_scope) =
tcx.adjust_ident_and_get_scope(binding.item_name, candidate.def_id(), hir_ref_id);
// We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
// of calling `filter_by_name_and_kind`.
let find_item_of_kind = |kind| {
tcx.associated_items(candidate.def_id())
.filter_by_name_unhygienic(assoc_ident.name)
.find(|i| i.kind == kind && i.ident(tcx).normalize_to_macros_2_0() == assoc_ident)
};
let assoc_item = find_item_of_kind(ty::AssocKind::Type)
.or_else(|| find_item_of_kind(ty::AssocKind::Const))
.expect("missing associated type");
if !assoc_item.visibility(tcx).is_accessible_from(def_scope, tcx) {
tcx.sess
.struct_span_err(
binding.span,
&format!("{} `{}` is private", assoc_item.kind, binding.item_name),
)
.span_label(binding.span, &format!("private {}", assoc_item.kind))
.emit();
}
tcx.check_stability(assoc_item.def_id, Some(hir_ref_id), binding.span, None);
if !speculative {
dup_bindings
.entry(assoc_item.def_id)
.and_modify(|prev_span| {
self.tcx().sess.emit_err(ValueOfAssociatedStructAlreadySpecified {
span: binding.span,
prev_span: *prev_span,
item_name: binding.item_name,
def_path: tcx.def_path_str(assoc_item.container_id(tcx)),
});
})
.or_insert(binding.span);
}
// Include substitutions for generic parameters of associated types
let projection_ty = candidate.map_bound(|trait_ref| {
let ident = Ident::new(assoc_item.name, binding.item_name.span);
let item_segment = hir::PathSegment {
ident,
hir_id: binding.hir_id,
res: Res::Err,
args: Some(binding.gen_args),
infer_args: false,
};
let substs_trait_ref_and_assoc_item = self.create_substs_for_associated_item(
path_span,
assoc_item.def_id,
&item_segment,
trait_ref.substs,
);
debug!(?substs_trait_ref_and_assoc_item);
ty::ProjectionTy {
item_def_id: assoc_item.def_id,
substs: substs_trait_ref_and_assoc_item,
}
});
if !speculative {
// Find any late-bound regions declared in `ty` that are not
// declared in the trait-ref or assoc_item. These are not well-formed.
//
// Example:
//
// for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
// for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
if let ConvertedBindingKind::Equality(ty) = binding.kind {
let late_bound_in_trait_ref =
tcx.collect_constrained_late_bound_regions(&projection_ty);
let late_bound_in_ty =
tcx.collect_referenced_late_bound_regions(&trait_ref.rebind(ty));
debug!(?late_bound_in_trait_ref);
debug!(?late_bound_in_ty);
// FIXME: point at the type params that don't have appropriate lifetimes:
// struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
// ---- ---- ^^^^^^^
self.validate_late_bound_regions(
late_bound_in_trait_ref,
late_bound_in_ty,
|br_name| {
struct_span_err!(
tcx.sess,
binding.span,
E0582,
"binding for associated type `{}` references {}, \
which does not appear in the trait input types",
binding.item_name,
br_name
)
},
);
}
}
match binding.kind {
ConvertedBindingKind::Equality(mut term) => {
// "Desugar" a constraint like `T: Iterator<Item = u32>` this to
// the "projection predicate" for:
//
// `<T as Iterator>::Item = u32`
let assoc_item_def_id = projection_ty.skip_binder().item_def_id;
let def_kind = tcx.def_kind(assoc_item_def_id);
match (def_kind, term.unpack()) {
(hir::def::DefKind::AssocTy, ty::TermKind::Ty(_))
| (hir::def::DefKind::AssocConst, ty::TermKind::Const(_)) => (),
(_, _) => {
let got = if let Some(_) = term.ty() { "type" } else { "constant" };
let expected = def_kind.descr(assoc_item_def_id);
let reported = tcx
.sess
.struct_span_err(
binding.span,
&format!("expected {expected} bound, found {got}"),
)
.span_note(
tcx.def_span(assoc_item_def_id),
&format!("{expected} defined here"),
)
.emit();
term = match def_kind {
hir::def::DefKind::AssocTy => {
tcx.ty_error_with_guaranteed(reported).into()
}
hir::def::DefKind::AssocConst => tcx
.const_error_with_guaranteed(
tcx.bound_type_of(assoc_item_def_id)
.subst(tcx, projection_ty.skip_binder().substs),
reported,
)
.into(),
_ => unreachable!(),
};
}
}
bounds.projection_bounds.push((
projection_ty.map_bound(|projection_ty| ty::ProjectionPredicate {
projection_ty,
term: term,
}),
binding.span,
));
}
ConvertedBindingKind::Constraint(ast_bounds) => {
// "Desugar" a constraint like `T: Iterator<Item: Debug>` to
//
// `<T as Iterator>::Item: Debug`
//
// Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
// parameter to have a skipped binder.
let param_ty = tcx.mk_ty(ty::Projection(projection_ty.skip_binder()));
self.add_bounds(param_ty, ast_bounds.iter(), bounds, candidate.bound_vars());
}
}
Ok(())
}
fn ast_path_to_ty(
&self,
span: Span,
did: DefId,
item_segment: &hir::PathSegment<'_>,
) -> Ty<'tcx> {
let substs = self.ast_path_substs_for_ty(span, did, item_segment);
self.normalize_ty(
span,
EarlyBinder(self.tcx().at(span).type_of(did)).subst(self.tcx(), substs),
)
}
fn conv_object_ty_poly_trait_ref(
&self,
span: Span,
trait_bounds: &[hir::PolyTraitRef<'_>],
lifetime: &hir::Lifetime,
borrowed: bool,
representation: DynKind,
) -> Ty<'tcx> {
let tcx = self.tcx();
let mut bounds = Bounds::default();
let mut potential_assoc_types = Vec::new();
let dummy_self = self.tcx().types.trait_object_dummy_self;
for trait_bound in trait_bounds.iter().rev() {
if let GenericArgCountResult {
correct:
Err(GenericArgCountMismatch { invalid_args: cur_potential_assoc_types, .. }),
..
} = self.instantiate_poly_trait_ref(
&trait_bound.trait_ref,
trait_bound.span,
ty::BoundConstness::NotConst,
dummy_self,
&mut bounds,
false,
) {
potential_assoc_types.extend(cur_potential_assoc_types);
}
}
// Expand trait aliases recursively and check that only one regular (non-auto) trait
// is used and no 'maybe' bounds are used.
let expanded_traits =
traits::expand_trait_aliases(tcx, bounds.trait_bounds.iter().map(|&(a, b, _)| (a, b)));
let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) = expanded_traits
.filter(|i| i.trait_ref().self_ty().skip_binder() == dummy_self)
.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
if regular_traits.len() > 1 {
let first_trait = ®ular_traits[0];
let additional_trait = ®ular_traits[1];
let mut err = struct_span_err!(
tcx.sess,
additional_trait.bottom().1,
E0225,
"only auto traits can be used as additional traits in a trait object"
);
additional_trait.label_with_exp_info(
&mut err,
"additional non-auto trait",
"additional use",
);
first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
err.help(&format!(
"consider creating a new trait with all of these as supertraits and using that \
trait here instead: `trait NewTrait: {} {{}}`",
regular_traits
.iter()
.map(|t| t.trait_ref().print_only_trait_path().to_string())
.collect::<Vec<_>>()
.join(" + "),
));
err.note(
"auto-traits like `Send` and `Sync` are traits that have special properties; \
for more information on them, visit \
<https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits>",
);
err.emit();
}
if regular_traits.is_empty() && auto_traits.is_empty() {
let trait_alias_span = bounds
.trait_bounds
.iter()
.map(|&(trait_ref, _, _)| trait_ref.def_id())
.find(|&trait_ref| tcx.is_trait_alias(trait_ref))
.map(|trait_ref| tcx.def_span(trait_ref));
let reported =
tcx.sess.emit_err(TraitObjectDeclaredWithNoTraits { span, trait_alias_span });
return tcx.ty_error_with_guaranteed(reported);
}
// Check that there are no gross object safety violations;
// most importantly, that the supertraits don't contain `Self`,
// to avoid ICEs.
for item in ®ular_traits {
let object_safety_violations =
astconv_object_safety_violations(tcx, item.trait_ref().def_id());
if !object_safety_violations.is_empty() {
let reported = report_object_safety_error(
tcx,
span,
item.trait_ref().def_id(),
&object_safety_violations,
)
.emit();
return tcx.ty_error_with_guaranteed(reported);
}
}
// Use a `BTreeSet` to keep output in a more consistent order.
let mut associated_types: FxHashMap<Span, BTreeSet<DefId>> = FxHashMap::default();
let regular_traits_refs_spans = bounds
.trait_bounds
.into_iter()
.filter(|(trait_ref, _, _)| !tcx.trait_is_auto(trait_ref.def_id()));
for (base_trait_ref, span, constness) in regular_traits_refs_spans {
assert_eq!(constness, ty::BoundConstness::NotConst);
for obligation in traits::elaborate_trait_ref(tcx, base_trait_ref) {
debug!(
"conv_object_ty_poly_trait_ref: observing object predicate `{:?}`",
obligation.predicate
);
let bound_predicate = obligation.predicate.kind();
match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::Clause::Trait(pred)) => {
let pred = bound_predicate.rebind(pred);
associated_types.entry(span).or_default().extend(
tcx.associated_items(pred.def_id())
.in_definition_order()
.filter(|item| item.kind == ty::AssocKind::Type)
.map(|item| item.def_id),
);
}
ty::PredicateKind::Clause(ty::Clause::Projection(pred)) => {
let pred = bound_predicate.rebind(pred);
// A `Self` within the original bound will be substituted with a
// `trait_object_dummy_self`, so check for that.
let references_self = match pred.skip_binder().term.unpack() {
ty::TermKind::Ty(ty) => ty.walk().any(|arg| arg == dummy_self.into()),
ty::TermKind::Const(c) => {
c.ty().walk().any(|arg| arg == dummy_self.into())
}
};
// If the projection output contains `Self`, force the user to
// elaborate it explicitly to avoid a lot of complexity.
//
// The "classically useful" case is the following:
// ```
// trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
// type MyOutput;
// }
// ```
//
// Here, the user could theoretically write `dyn MyTrait<Output = X>`,
// but actually supporting that would "expand" to an infinitely-long type
// `fix $ τ → dyn MyTrait<MyOutput = X, Output = <τ as MyTrait>::MyOutput`.
//
// Instead, we force the user to write
// `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
// the discussion in #56288 for alternatives.
if !references_self {
// Include projections defined on supertraits.
bounds.projection_bounds.push((pred, span));
}
}
_ => (),
}
}
}
for (projection_bound, _) in &bounds.projection_bounds {
for def_ids in associated_types.values_mut() {
def_ids.remove(&projection_bound.projection_def_id());
}
}
self.complain_about_missing_associated_types(
associated_types,
potential_assoc_types,
trait_bounds,
);
// De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
// `dyn Trait + Send`.
// We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
// the bounds
let mut duplicates = FxHashSet::default();
auto_traits.retain(|i| duplicates.insert(i.trait_ref().def_id()));
debug!("regular_traits: {:?}", regular_traits);
debug!("auto_traits: {:?}", auto_traits);
// Erase the `dummy_self` (`trait_object_dummy_self`) used above.
let existential_trait_refs = regular_traits.iter().map(|i| {
i.trait_ref().map_bound(|trait_ref: ty::TraitRef<'tcx>| {
assert_eq!(trait_ref.self_ty(), dummy_self);
// Verify that `dummy_self` did not leak inside default type parameters. This
// could not be done at path creation, since we need to see through trait aliases.
let mut missing_type_params = vec![];
let mut references_self = false;
let generics = tcx.generics_of(trait_ref.def_id);
let substs: Vec<_> = trait_ref
.substs
.iter()
.enumerate()
.skip(1) // Remove `Self` for `ExistentialPredicate`.
.map(|(index, arg)| {
if arg == dummy_self.into() {
let param = &generics.params[index];
missing_type_params.push(param.name);
return tcx.ty_error().into();
} else if arg.walk().any(|arg| arg == dummy_self.into()) {
references_self = true;
return tcx.ty_error().into();
}
arg
})
.collect();
let substs = tcx.intern_substs(&substs[..]);
let span = i.bottom().1;
let empty_generic_args = trait_bounds.iter().any(|hir_bound| {
hir_bound.trait_ref.path.res == Res::Def(DefKind::Trait, trait_ref.def_id)
&& hir_bound.span.contains(span)
});
self.complain_about_missing_type_params(
missing_type_params,
trait_ref.def_id,
span,
empty_generic_args,
);
if references_self {
let def_id = i.bottom().0.def_id();
let mut err = struct_span_err!(
tcx.sess,
i.bottom().1,
E0038,
"the {} `{}` cannot be made into an object",
tcx.def_kind(def_id).descr(def_id),
tcx.item_name(def_id),
);
err.note(
rustc_middle::traits::ObjectSafetyViolation::SupertraitSelf(smallvec![])
.error_msg(),
);
err.emit();
}
ty::ExistentialTraitRef { def_id: trait_ref.def_id, substs }
})
});
let existential_projections = bounds.projection_bounds.iter().map(|(bound, _)| {
bound.map_bound(|mut b| {
assert_eq!(b.projection_ty.self_ty(), dummy_self);
// Like for trait refs, verify that `dummy_self` did not leak inside default type
// parameters.
let references_self = b.projection_ty.substs.iter().skip(1).any(|arg| {
if arg.walk().any(|arg| arg == dummy_self.into()) {
return true;
}
false
});
if references_self {
tcx.sess
.delay_span_bug(span, "trait object projection bounds reference `Self`");
let substs: Vec<_> = b
.projection_ty
.substs
.iter()
.map(|arg| {
if arg.walk().any(|arg| arg == dummy_self.into()) {
return tcx.ty_error().into();
}
arg
})
.collect();
b.projection_ty.substs = tcx.intern_substs(&substs[..]);
}
ty::ExistentialProjection::erase_self_ty(tcx, b)
})
});
let regular_trait_predicates = existential_trait_refs
.map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait));
let auto_trait_predicates = auto_traits.into_iter().map(|trait_ref| {
ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()))
});
// N.b. principal, projections, auto traits
// FIXME: This is actually wrong with multiple principals in regards to symbol mangling
let mut v = regular_trait_predicates
.chain(
existential_projections.map(|x| x.map_bound(ty::ExistentialPredicate::Projection)),
)
.chain(auto_trait_predicates)
.collect::<SmallVec<[_; 8]>>();
v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
v.dedup();
let existential_predicates = tcx.mk_poly_existential_predicates(v.into_iter());
// Use explicitly-specified region bound.
let region_bound = if !lifetime.is_elided() {
self.ast_region_to_region(lifetime, None)
} else {
self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
if tcx.named_region(lifetime.hir_id).is_some() {
self.ast_region_to_region(lifetime, None)
} else {
self.re_infer(None, span).unwrap_or_else(|| {
let mut err = struct_span_err!(
tcx.sess,
span,
E0228,
"the lifetime bound for this object type cannot be deduced \
from context; please supply an explicit bound"
);
if borrowed {
// We will have already emitted an error E0106 complaining about a
// missing named lifetime in `&dyn Trait`, so we elide this one.
err.delay_as_bug();
} else {
err.emit();
}
tcx.lifetimes.re_static
})
}
})
};
debug!("region_bound: {:?}", region_bound);
let ty = tcx.mk_dynamic(existential_predicates, region_bound, representation);
debug!("trait_object_type: {:?}", ty);
ty
}
fn report_ambiguous_associated_type(
&self,
span: Span,
type_str: &str,
trait_str: &str,
name: Symbol,
) -> ErrorGuaranteed {
let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
if self
.tcx()
.resolutions(())
.confused_type_with_std_module
.keys()
.any(|full_span| full_span.contains(span))
{
err.span_suggestion(
span.shrink_to_lo(),
"you are looking for the module in `std`, not the primitive type",
"std::",
Applicability::MachineApplicable,
);
} else {
err.span_suggestion(
span,
"use fully-qualified syntax",
format!("<{} as {}>::{}", type_str, trait_str, name),
Applicability::HasPlaceholders,
);
}
err.emit()
}
// Search for a bound on a type parameter which includes the associated item
// given by `assoc_name`. `ty_param_def_id` is the `DefId` of the type parameter
// This function will fail if there are no suitable bounds or there is
// any ambiguity.
fn find_bound_for_assoc_item(
&self,
ty_param_def_id: LocalDefId,
assoc_name: Ident,
span: Span,
) -> Result<ty::PolyTraitRef<'tcx>, ErrorGuaranteed> {
let tcx = self.tcx();
debug!(
"find_bound_for_assoc_item(ty_param_def_id={:?}, assoc_name={:?}, span={:?})",
ty_param_def_id, assoc_name, span,
);
let predicates = &self
.get_type_parameter_bounds(span, ty_param_def_id.to_def_id(), assoc_name)
.predicates;
debug!("find_bound_for_assoc_item: predicates={:#?}", predicates);
let param_name = tcx.hir().ty_param_name(ty_param_def_id);
self.one_bound_for_assoc_type(
|| {
traits::transitive_bounds_that_define_assoc_type(
tcx,
predicates.iter().filter_map(|(p, _)| {
Some(p.to_opt_poly_trait_pred()?.map_bound(|t| t.trait_ref))
}),
assoc_name,
)
},
|| param_name.to_string(),
assoc_name,
span,
|| None,
)
}
// Checks that `bounds` contains exactly one element and reports appropriate
// errors otherwise.
#[instrument(level = "debug", skip(self, all_candidates, ty_param_name, is_equality), ret)]
fn one_bound_for_assoc_type<I>(
&self,
all_candidates: impl Fn() -> I,
ty_param_name: impl Fn() -> String,
assoc_name: Ident,
span: Span,
is_equality: impl Fn() -> Option<String>,
) -> Result<ty::PolyTraitRef<'tcx>, ErrorGuaranteed>
where
I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
{
let mut matching_candidates = all_candidates()
.filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_name));
let mut const_candidates = all_candidates()
.filter(|r| self.trait_defines_associated_const_named(r.def_id(), assoc_name));
let (bound, next_cand) = match (matching_candidates.next(), const_candidates.next()) {
(Some(bound), _) => (bound, matching_candidates.next()),
(None, Some(bound)) => (bound, const_candidates.next()),
(None, None) => {
let reported = self.complain_about_assoc_type_not_found(
all_candidates,
&ty_param_name(),
assoc_name,
span,
);
return Err(reported);
}
};
debug!(?bound);
if let Some(bound2) = next_cand {
debug!(?bound2);
let is_equality = is_equality();
let bounds = IntoIterator::into_iter([bound, bound2]).chain(matching_candidates);
let mut err = if is_equality.is_some() {
// More specific Error Index entry.
struct_span_err!(
self.tcx().sess,
span,
E0222,
"ambiguous associated type `{}` in bounds of `{}`",
assoc_name,
ty_param_name()
)
} else {
struct_span_err!(
self.tcx().sess,
span,
E0221,
"ambiguous associated type `{}` in bounds of `{}`",
assoc_name,
ty_param_name()
)
};
err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
let mut where_bounds = vec![];
for bound in bounds {
let bound_id = bound.def_id();
let bound_span = self
.tcx()
.associated_items(bound_id)
.find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, bound_id)
.and_then(|item| self.tcx().hir().span_if_local(item.def_id));
if let Some(bound_span) = bound_span {
err.span_label(
bound_span,
format!(
"ambiguous `{}` from `{}`",
assoc_name,
bound.print_only_trait_path(),
),
);
if let Some(constraint) = &is_equality {
where_bounds.push(format!(
" T: {trait}::{assoc} = {constraint}",
trait=bound.print_only_trait_path(),
assoc=assoc_name,
constraint=constraint,
));
} else {
err.span_suggestion_verbose(
span.with_hi(assoc_name.span.lo()),
"use fully qualified syntax to disambiguate",
format!(
"<{} as {}>::",
ty_param_name(),
bound.print_only_trait_path(),
),
Applicability::MaybeIncorrect,
);
}
} else {
err.note(&format!(
"associated type `{}` could derive from `{}`",
ty_param_name(),
bound.print_only_trait_path(),
));
}
}
if !where_bounds.is_empty() {
err.help(&format!(
"consider introducing a new type parameter `T` and adding `where` constraints:\
\n where\n T: {},\n{}",
ty_param_name(),
where_bounds.join(",\n"),
));
}
let reported = err.emit();
if !where_bounds.is_empty() {
return Err(reported);
}
}
Ok(bound)
}
// Create a type from a path to an associated type.
// For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
// and item_segment is the path segment for `D`. We return a type and a def for
// the whole path.
// Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
// parameter or `Self`.
// NOTE: When this function starts resolving `Trait::AssocTy` successfully
// it should also start reporting the `BARE_TRAIT_OBJECTS` lint.
#[instrument(level = "debug", skip(self, hir_ref_id, span, qself, assoc_segment), fields(assoc_ident=?assoc_segment.ident), ret)]
pub fn associated_path_to_ty(
&self,
hir_ref_id: hir::HirId,
span: Span,
qself_ty: Ty<'tcx>,
qself: &hir::Ty<'_>,
assoc_segment: &hir::PathSegment<'_>,
permit_variants: bool,
) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorGuaranteed> {
let tcx = self.tcx();
let assoc_ident = assoc_segment.ident;
let qself_res = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.kind {
path.res
} else {
Res::Err
};
// Check if we have an enum variant.
let mut variant_resolution = None;
if let ty::Adt(adt_def, adt_substs) = qself_ty.kind() {
if adt_def.is_enum() {
let variant_def = adt_def
.variants()
.iter()
.find(|vd| tcx.hygienic_eq(assoc_ident, vd.ident(tcx), adt_def.did()));
if let Some(variant_def) = variant_def {
if permit_variants {
tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span, None);
self.prohibit_generics(slice::from_ref(assoc_segment).iter(), |err| {
err.note("enum variants can't have type parameters");
let type_name = tcx.item_name(adt_def.did());
let msg = format!(
"you might have meant to specity type parameters on enum \
`{type_name}`"
);
let Some(args) = assoc_segment.args else { return; };
// Get the span of the generics args *including* the leading `::`.
let args_span = assoc_segment.ident.span.shrink_to_hi().to(args.span_ext);
if tcx.generics_of(adt_def.did()).count() == 0 {
// FIXME(estebank): we could also verify that the arguments being
// work for the `enum`, instead of just looking if it takes *any*.
err.span_suggestion_verbose(
args_span,
&format!("{type_name} doesn't have generic parameters"),
"",
Applicability::MachineApplicable,
);
return;
}
let Ok(snippet) = tcx.sess.source_map().span_to_snippet(args_span) else {
err.note(&msg);
return;
};
let (qself_sugg_span, is_self) = if let hir::TyKind::Path(
hir::QPath::Resolved(_, ref path)
) = qself.kind {
// If the path segment already has type params, we want to overwrite
// them.
match &path.segments[..] {
// `segment` is the previous to last element on the path,
// which would normally be the `enum` itself, while the last
// `_` `PathSegment` corresponds to the variant.
[.., hir::PathSegment {
ident,
args,
res: Res::Def(DefKind::Enum, _),
..
}, _] => (
// We need to include the `::` in `Type::Variant::<Args>`
// to point the span to `::<Args>`, not just `<Args>`.
ident.span.shrink_to_hi().to(args.map_or(
ident.span.shrink_to_hi(),
|a| a.span_ext)),
false,
),
[segment] => (
// We need to include the `::` in `Type::Variant::<Args>`
// to point the span to `::<Args>`, not just `<Args>`.
segment.ident.span.shrink_to_hi().to(segment.args.map_or(
segment.ident.span.shrink_to_hi(),
|a| a.span_ext)),
kw::SelfUpper == segment.ident.name,
),
_ => {
err.note(&msg);
return;
}
}
} else {
err.note(&msg);
return;
};
let suggestion = vec![
if is_self {
// Account for people writing `Self::Variant::<Args>`, where
// `Self` is the enum, and suggest replacing `Self` with the
// appropriate type: `Type::<Args>::Variant`.
(qself.span, format!("{type_name}{snippet}"))
} else {
(qself_sugg_span, snippet)
},
(args_span, String::new()),
];
err.multipart_suggestion_verbose(
&msg,
suggestion,
Applicability::MaybeIncorrect,
);
});
return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
} else {
variant_resolution = Some(variant_def.def_id);
}
}
}
// see if we can satisfy using an inherent associated type
for &impl_ in tcx.inherent_impls(adt_def.did()) {
let Some(assoc_ty_did) = self.lookup_assoc_ty(assoc_ident, hir_ref_id, span, impl_) else {
continue;
};
let item_substs = self.create_substs_for_associated_item(
span,
assoc_ty_did,
assoc_segment,
adt_substs,
);
let ty = tcx.bound_type_of(assoc_ty_did).subst(tcx, item_substs);
let ty = self.normalize_ty(span, ty);
return Ok((ty, DefKind::AssocTy, assoc_ty_did));
}
}
// Find the type of the associated item, and the trait where the associated
// item is declared.
let bound = match (&qself_ty.kind(), qself_res) {
(_, Res::SelfTyAlias { alias_to: impl_def_id, is_trait_impl: true, .. }) => {
// `Self` in an impl of a trait -- we have a concrete self type and a
// trait reference.
let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) else {
// A cycle error occurred, most likely.
let guar = tcx.sess.delay_span_bug(span, "expected cycle error");
return Err(guar);
};
self.one_bound_for_assoc_type(
|| traits::supertraits(tcx, ty::Binder::dummy(trait_ref)),
|| "Self".to_string(),
assoc_ident,
span,
|| None,
)?
}
(
&ty::Param(_),
Res::SelfTyParam { trait_: param_did } | Res::Def(DefKind::TyParam, param_did),
) => self.find_bound_for_assoc_item(param_did.expect_local(), assoc_ident, span)?,
_ => {
let reported = if variant_resolution.is_some() {
// Variant in type position
let msg = format!("expected type, found variant `{}`", assoc_ident);
tcx.sess.span_err(span, &msg)
} else if qself_ty.is_enum() {
let mut err = struct_span_err!(
tcx.sess,
assoc_ident.span,
E0599,
"no variant named `{}` found for enum `{}`",
assoc_ident,
qself_ty,
);
let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
if let Some(suggested_name) = find_best_match_for_name(
&adt_def
.variants()
.iter()
.map(|variant| variant.name)
.collect::<Vec<Symbol>>(),
assoc_ident.name,
None,
) {
err.span_suggestion(
assoc_ident.span,
"there is a variant with a similar name",
suggested_name,
Applicability::MaybeIncorrect,
);
} else {
err.span_label(
assoc_ident.span,
format!("variant not found in `{}`", qself_ty),
);
}
if let Some(sp) = tcx.hir().span_if_local(adt_def.did()) {
err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
}
err.emit()
} else if let Err(reported) = qself_ty.error_reported() {
reported
} else {
// Don't print `TyErr` to the user.
self.report_ambiguous_associated_type(
span,
&qself_ty.to_string(),
"Trait",
assoc_ident.name,
)
};
return Err(reported);
}
};
let trait_did = bound.def_id();
let Some(assoc_ty_did) = self.lookup_assoc_ty(assoc_ident, hir_ref_id, span, trait_did) else {
// Assume that if it's not matched, there must be a const defined with the same name
// but it was used in a type position.
let msg = format!("found associated const `{assoc_ident}` when type was expected");
let guar = tcx.sess.struct_span_err(span, &msg).emit();
return Err(guar);
};
let ty = self.projected_ty_from_poly_trait_ref(span, assoc_ty_did, assoc_segment, bound);
let ty = self.normalize_ty(span, ty);
if let Some(variant_def_id) = variant_resolution {
tcx.struct_span_lint_hir(
AMBIGUOUS_ASSOCIATED_ITEMS,
hir_ref_id,
span,
"ambiguous associated item",
|lint| {
let mut could_refer_to = |kind: DefKind, def_id, also| {
let note_msg = format!(
"`{}` could{} refer to the {} defined here",
assoc_ident,
also,
kind.descr(def_id)
);
lint.span_note(tcx.def_span(def_id), ¬e_msg);
};
could_refer_to(DefKind::Variant, variant_def_id, "");
could_refer_to(DefKind::AssocTy, assoc_ty_did, " also");
lint.span_suggestion(
span,
"use fully-qualified syntax",
format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
Applicability::MachineApplicable,
);
lint
},
);
}
Ok((ty, DefKind::AssocTy, assoc_ty_did))
}
fn lookup_assoc_ty(
&self,
ident: Ident,
block: hir::HirId,
span: Span,
scope: DefId,
) -> Option<DefId> {
let tcx = self.tcx();
let (ident, def_scope) = tcx.adjust_ident_and_get_scope(ident, scope, block);
// We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
// of calling `find_by_name_and_kind`.
let item = tcx.associated_items(scope).in_definition_order().find(|i| {
i.kind.namespace() == Namespace::TypeNS
&& i.ident(tcx).normalize_to_macros_2_0() == ident
})?;
let kind = DefKind::AssocTy;
if !item.visibility(tcx).is_accessible_from(def_scope, tcx) {
let kind = kind.descr(item.def_id);
let msg = format!("{kind} `{ident}` is private");
let def_span = self.tcx().def_span(item.def_id);
tcx.sess
.struct_span_err_with_code(span, &msg, rustc_errors::error_code!(E0624))
.span_label(span, &format!("private {kind}"))
.span_label(def_span, &format!("{kind} defined here"))
.emit();
}
tcx.check_stability(item.def_id, Some(block), span, None);
Some(item.def_id)
}
fn qpath_to_ty(
&self,
span: Span,
opt_self_ty: Option<Ty<'tcx>>,
item_def_id: DefId,
trait_segment: &hir::PathSegment<'_>,
item_segment: &hir::PathSegment<'_>,
constness: ty::BoundConstness,
) -> Ty<'tcx> {
let tcx = self.tcx();
let trait_def_id = tcx.parent(item_def_id);
debug!("qpath_to_ty: trait_def_id={:?}", trait_def_id);
let Some(self_ty) = opt_self_ty else {
let path_str = tcx.def_path_str(trait_def_id);
let def_id = self.item_def_id();
debug!("qpath_to_ty: self.item_def_id()={:?}", def_id);
let parent_def_id = def_id.as_local().map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id))
.map(|hir_id| tcx.hir().get_parent_item(hir_id).to_def_id());
debug!("qpath_to_ty: parent_def_id={:?}", parent_def_id);
// If the trait in segment is the same as the trait defining the item,
// use the `<Self as ..>` syntax in the error.
let is_part_of_self_trait_constraints = def_id == trait_def_id;
let is_part_of_fn_in_self_trait = parent_def_id == Some(trait_def_id);
let type_name = if is_part_of_self_trait_constraints || is_part_of_fn_in_self_trait {
"Self"
} else {
"Type"
};
let reported = self.report_ambiguous_associated_type(
span,
type_name,
&path_str,
item_segment.ident.name,
);
return tcx.ty_error_with_guaranteed(reported)
};
debug!("qpath_to_ty: self_type={:?}", self_ty);
let trait_ref = self.ast_path_to_mono_trait_ref(
span,
trait_def_id,
self_ty,
trait_segment,
false,
constness,
);
let item_substs = self.create_substs_for_associated_item(
span,
item_def_id,
item_segment,
trait_ref.substs,
);
debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
self.normalize_ty(span, tcx.mk_projection(item_def_id, item_substs))
}
pub fn prohibit_generics<'a>(
&self,
segments: impl Iterator<Item = &'a hir::PathSegment<'a>> + Clone,
extend: impl Fn(&mut Diagnostic),
) -> bool {
let args = segments.clone().flat_map(|segment| segment.args().args);
let (lt, ty, ct, inf) =
args.clone().fold((false, false, false, false), |(lt, ty, ct, inf), arg| match arg {
hir::GenericArg::Lifetime(_) => (true, ty, ct, inf),
hir::GenericArg::Type(_) => (lt, true, ct, inf),
hir::GenericArg::Const(_) => (lt, ty, true, inf),
hir::GenericArg::Infer(_) => (lt, ty, ct, true),
});
let mut emitted = false;
if lt || ty || ct || inf {
let types_and_spans: Vec<_> = segments
.clone()
.flat_map(|segment| {
if segment.args().args.is_empty() {
None
} else {
Some((
match segment.res {
Res::PrimTy(ty) => format!("{} `{}`", segment.res.descr(), ty.name()),
Res::Def(_, def_id)
if let Some(name) = self.tcx().opt_item_name(def_id) => {
format!("{} `{name}`", segment.res.descr())
}
Res::Err => "this type".to_string(),
_ => segment.res.descr().to_string(),
},
segment.ident.span,
))
}
})
.collect();
let this_type = match &types_and_spans[..] {
[.., _, (last, _)] => format!(
"{} and {last}",
types_and_spans[..types_and_spans.len() - 1]
.iter()
.map(|(x, _)| x.as_str())
.intersperse(&", ")
.collect::<String>()
),
[(only, _)] => only.to_string(),
[] => "this type".to_string(),
};
let arg_spans: Vec<Span> = args.map(|arg| arg.span()).collect();
let mut kinds = Vec::with_capacity(4);
if lt {
kinds.push("lifetime");
}
if ty {
kinds.push("type");
}
if ct {
kinds.push("const");
}
if inf {
kinds.push("generic");
}
let (kind, s) = match kinds[..] {
[.., _, last] => (
format!(
"{} and {last}",
kinds[..kinds.len() - 1]
.iter()
.map(|&x| x)
.intersperse(", ")
.collect::<String>()
),
"s",
),
[only] => (format!("{only}"), ""),
[] => unreachable!(),
};
let last_span = *arg_spans.last().unwrap();
let span: MultiSpan = arg_spans.into();
let mut err = struct_span_err!(
self.tcx().sess,
span,
E0109,
"{kind} arguments are not allowed on {this_type}",
);
err.span_label(last_span, format!("{kind} argument{s} not allowed"));
for (what, span) in types_and_spans {
err.span_label(span, format!("not allowed on {what}"));
}
extend(&mut err);
err.emit();
emitted = true;
}
for segment in segments {
// Only emit the first error to avoid overloading the user with error messages.
if let Some(b) = segment.args().bindings.first() {
Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
return true;
}
}
emitted
}
// FIXME(eddyb, varkor) handle type paths here too, not just value ones.
pub fn def_ids_for_value_path_segments(
&self,
segments: &[hir::PathSegment<'_>],
self_ty: Option<Ty<'tcx>>,
kind: DefKind,
def_id: DefId,
) -> Vec<PathSeg> {
// We need to extract the type parameters supplied by the user in
// the path `path`. Due to the current setup, this is a bit of a
// tricky-process; the problem is that resolve only tells us the
// end-point of the path resolution, and not the intermediate steps.
// Luckily, we can (at least for now) deduce the intermediate steps
// just from the end-point.
//
// There are basically five cases to consider:
//
// 1. Reference to a constructor of a struct:
//
// struct Foo<T>(...)
//
// In this case, the parameters are declared in the type space.
//
// 2. Reference to a constructor of an enum variant:
//
// enum E<T> { Foo(...) }
//
// In this case, the parameters are defined in the type space,
// but may be specified either on the type or the variant.
//
// 3. Reference to a fn item or a free constant:
//
// fn foo<T>() { }
//
// In this case, the path will again always have the form
// `a::b::foo::<T>` where only the final segment should have
// type parameters. However, in this case, those parameters are
// declared on a value, and hence are in the `FnSpace`.
//
// 4. Reference to a method or an associated constant:
//
// impl<A> SomeStruct<A> {
// fn foo<B>(...)
// }
//
// Here we can have a path like
// `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
// may appear in two places. The penultimate segment,
// `SomeStruct::<A>`, contains parameters in TypeSpace, and the
// final segment, `foo::<B>` contains parameters in fn space.
//
// The first step then is to categorize the segments appropriately.
let tcx = self.tcx();
assert!(!segments.is_empty());
let last = segments.len() - 1;
let mut path_segs = vec![];
match kind {
// Case 1. Reference to a struct constructor.
DefKind::Ctor(CtorOf::Struct, ..) => {
// Everything but the final segment should have no
// parameters at all.
let generics = tcx.generics_of(def_id);
// Variant and struct constructors use the
// generics of their parent type definition.
let generics_def_id = generics.parent.unwrap_or(def_id);
path_segs.push(PathSeg(generics_def_id, last));
}
// Case 2. Reference to a variant constructor.
DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
let (generics_def_id, index) = if let Some(adt_def) = adt_def {
debug_assert!(adt_def.is_enum());
(adt_def.did(), last)
} else if last >= 1 && segments[last - 1].args.is_some() {
// Everything but the penultimate segment should have no
// parameters at all.
let mut def_id = def_id;
// `DefKind::Ctor` -> `DefKind::Variant`
if let DefKind::Ctor(..) = kind {
def_id = tcx.parent(def_id);
}
// `DefKind::Variant` -> `DefKind::Enum`
let enum_def_id = tcx.parent(def_id);
(enum_def_id, last - 1)
} else {
// FIXME: lint here recommending `Enum::<...>::Variant` form
// instead of `Enum::Variant::<...>` form.
// Everything but the final segment should have no
// parameters at all.
let generics = tcx.generics_of(def_id);
// Variant and struct constructors use the
// generics of their parent type definition.
(generics.parent.unwrap_or(def_id), last)
};
path_segs.push(PathSeg(generics_def_id, index));
}
// Case 3. Reference to a top-level value.
DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static(_) => {
path_segs.push(PathSeg(def_id, last));
}
// Case 4. Reference to a method or associated const.
DefKind::AssocFn | DefKind::AssocConst => {
if segments.len() >= 2 {
let generics = tcx.generics_of(def_id);
path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
}
path_segs.push(PathSeg(def_id, last));
}
kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
}
debug!("path_segs = {:?}", path_segs);
path_segs
}
/// Check a type `Path` and convert it to a `Ty`.
pub fn res_to_ty(
&self,
opt_self_ty: Option<Ty<'tcx>>,
path: &hir::Path<'_>,
permit_variants: bool,
) -> Ty<'tcx> {
let tcx = self.tcx();
debug!(
"res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
path.res, opt_self_ty, path.segments
);
let span = path.span;
match path.res {
Res::Def(DefKind::OpaqueTy | DefKind::ImplTraitPlaceholder, did) => {
// Check for desugared `impl Trait`.
assert!(tcx.is_type_alias_impl_trait(did));
let item_segment = path.segments.split_last().unwrap();
self.prohibit_generics(item_segment.1.iter(), |err| {
err.note("`impl Trait` types can't have type parameters");
});
let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
self.normalize_ty(span, tcx.mk_opaque(did, substs))
}
Res::Def(
DefKind::Enum
| DefKind::TyAlias
| DefKind::Struct
| DefKind::Union
| DefKind::ForeignTy,
did,
) => {
assert_eq!(opt_self_ty, None);
self.prohibit_generics(path.segments.split_last().unwrap().1.iter(), |_| {});
self.ast_path_to_ty(span, did, path.segments.last().unwrap())
}
Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
// Convert "variant type" as if it were a real type.
// The resulting `Ty` is type of the variant's enum for now.
assert_eq!(opt_self_ty, None);
let path_segs =
self.def_ids_for_value_path_segments(path.segments, None, kind, def_id);
let generic_segs: FxHashSet<_> =
path_segs.iter().map(|PathSeg(_, index)| index).collect();
self.prohibit_generics(
path.segments.iter().enumerate().filter_map(|(index, seg)| {
if !generic_segs.contains(&index) { Some(seg) } else { None }
}),
|err| {
err.note("enum variants can't have type parameters");
},
);
let PathSeg(def_id, index) = path_segs.last().unwrap();
self.ast_path_to_ty(span, *def_id, &path.segments[*index])
}
Res::Def(DefKind::TyParam, def_id) => {
assert_eq!(opt_self_ty, None);
self.prohibit_generics(path.segments.iter(), |err| {
if let Some(span) = tcx.def_ident_span(def_id) {
let name = tcx.item_name(def_id);
err.span_note(span, &format!("type parameter `{name}` defined here"));
}
});
let def_id = def_id.expect_local();
let item_def_id = tcx.hir().ty_param_owner(def_id);
let generics = tcx.generics_of(item_def_id);
let index = generics.param_def_id_to_index[&def_id.to_def_id()];
tcx.mk_ty_param(index, tcx.hir().ty_param_name(def_id))
}
Res::SelfTyParam { .. } => {
// `Self` in trait or type alias.
assert_eq!(opt_self_ty, None);
self.prohibit_generics(path.segments.iter(), |err| {
if let [hir::PathSegment { args: Some(args), ident, .. }] = &path.segments[..] {
err.span_suggestion_verbose(
ident.span.shrink_to_hi().to(args.span_ext),
"the `Self` type doesn't accept type parameters",
"",
Applicability::MaybeIncorrect,
);
}
});
tcx.types.self_param
}
Res::SelfTyAlias { alias_to: def_id, forbid_generic, .. } => {
// `Self` in impl (we know the concrete type).
assert_eq!(opt_self_ty, None);
// Try to evaluate any array length constants.
let ty = tcx.at(span).type_of(def_id);
let span_of_impl = tcx.span_of_impl(def_id);
self.prohibit_generics(path.segments.iter(), |err| {
let def_id = match *ty.kind() {
ty::Adt(self_def, _) => self_def.did(),
_ => return,
};
let type_name = tcx.item_name(def_id);
let span_of_ty = tcx.def_ident_span(def_id);
let generics = tcx.generics_of(def_id).count();
let msg = format!("`Self` is of type `{ty}`");
if let (Ok(i_sp), Some(t_sp)) = (span_of_impl, span_of_ty) {
let mut span: MultiSpan = vec![t_sp].into();
span.push_span_label(
i_sp,
&format!("`Self` is on type `{type_name}` in this `impl`"),
);
let mut postfix = "";
if generics == 0 {
postfix = ", which doesn't have generic parameters";
}
span.push_span_label(
t_sp,
&format!("`Self` corresponds to this type{postfix}"),
);
err.span_note(span, &msg);
} else {
err.note(&msg);
}
for segment in path.segments {
if let Some(args) = segment.args && segment.ident.name == kw::SelfUpper {
if generics == 0 {
// FIXME(estebank): we could also verify that the arguments being
// work for the `enum`, instead of just looking if it takes *any*.
err.span_suggestion_verbose(
segment.ident.span.shrink_to_hi().to(args.span_ext),
"the `Self` type doesn't accept type parameters",
"",
Applicability::MachineApplicable,
);
return;
} else {
err.span_suggestion_verbose(
segment.ident.span,
format!(
"the `Self` type doesn't accept type parameters, use the \
concrete type's name `{type_name}` instead if you want to \
specify its type parameters"
),
type_name,
Applicability::MaybeIncorrect,
);
}
}
}
});
// HACK(min_const_generics): Forbid generic `Self` types
// here as we can't easily do that during nameres.
//
// We do this before normalization as we otherwise allow
// ```rust
// trait AlwaysApplicable { type Assoc; }
// impl<T: ?Sized> AlwaysApplicable for T { type Assoc = usize; }
//
// trait BindsParam<T> {
// type ArrayTy;
// }
// impl<T> BindsParam<T> for <T as AlwaysApplicable>::Assoc {
// type ArrayTy = [u8; Self::MAX];
// }
// ```
// Note that the normalization happens in the param env of
// the anon const, which is empty. This is why the
// `AlwaysApplicable` impl needs a `T: ?Sized` bound for
// this to compile if we were to normalize here.
if forbid_generic && ty.needs_subst() {
let mut err = tcx.sess.struct_span_err(
path.span,
"generic `Self` types are currently not permitted in anonymous constants",
);
if let Some(hir::Node::Item(&hir::Item {
kind: hir::ItemKind::Impl(ref impl_),
..
})) = tcx.hir().get_if_local(def_id)
{
err.span_note(impl_.self_ty.span, "not a concrete type");
}
tcx.ty_error_with_guaranteed(err.emit())
} else {
self.normalize_ty(span, ty)
}
}
Res::Def(DefKind::AssocTy, def_id) => {
debug_assert!(path.segments.len() >= 2);
self.prohibit_generics(path.segments[..path.segments.len() - 2].iter(), |_| {});
// HACK: until we support `<Type as ~const Trait>`, assume all of them are.
let constness = if tcx.has_attr(tcx.parent(def_id), sym::const_trait) {
ty::BoundConstness::ConstIfConst
} else {
ty::BoundConstness::NotConst
};
self.qpath_to_ty(
span,
opt_self_ty,
def_id,
&path.segments[path.segments.len() - 2],
path.segments.last().unwrap(),
constness,
)
}
Res::PrimTy(prim_ty) => {
assert_eq!(opt_self_ty, None);
self.prohibit_generics(path.segments.iter(), |err| {
let name = prim_ty.name_str();
for segment in path.segments {
if let Some(args) = segment.args {
err.span_suggestion_verbose(
segment.ident.span.shrink_to_hi().to(args.span_ext),
&format!("primitive type `{name}` doesn't have generic parameters"),
"",
Applicability::MaybeIncorrect,
);
}
}
});
match prim_ty {
hir::PrimTy::Bool => tcx.types.bool,
hir::PrimTy::Char => tcx.types.char,
hir::PrimTy::Int(it) => tcx.mk_mach_int(ty::int_ty(it)),
hir::PrimTy::Uint(uit) => tcx.mk_mach_uint(ty::uint_ty(uit)),
hir::PrimTy::Float(ft) => tcx.mk_mach_float(ty::float_ty(ft)),
hir::PrimTy::Str => tcx.types.str_,
}
}
Res::Err => {
let e = self
.tcx()
.sess
.delay_span_bug(path.span, "path with `Res:Err` but no error emitted");
self.set_tainted_by_errors(e);
self.tcx().ty_error_with_guaranteed(e)
}
_ => span_bug!(span, "unexpected resolution: {:?}", path.res),
}
}
/// Parses the programmer's textual representation of a type into our
/// internal notion of a type.
pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
self.ast_ty_to_ty_inner(ast_ty, false, false)
}
/// Parses the programmer's textual representation of a type into our
/// internal notion of a type. This is meant to be used within a path.
pub fn ast_ty_to_ty_in_path(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
self.ast_ty_to_ty_inner(ast_ty, false, true)
}
/// Turns a `hir::Ty` into a `Ty`. For diagnostics' purposes we keep track of whether trait
/// objects are borrowed like `&dyn Trait` to avoid emitting redundant errors.
#[instrument(level = "debug", skip(self), ret)]
fn ast_ty_to_ty_inner(&self, ast_ty: &hir::Ty<'_>, borrowed: bool, in_path: bool) -> Ty<'tcx> {
let tcx = self.tcx();
let result_ty = match ast_ty.kind {
hir::TyKind::Slice(ref ty) => tcx.mk_slice(self.ast_ty_to_ty(ty)),
hir::TyKind::Ptr(ref mt) => {
tcx.mk_ptr(ty::TypeAndMut { ty: self.ast_ty_to_ty(mt.ty), mutbl: mt.mutbl })
}
hir::TyKind::Rptr(ref region, ref mt) => {
let r = self.ast_region_to_region(region, None);
debug!(?r);
let t = self.ast_ty_to_ty_inner(mt.ty, true, false);
tcx.mk_ref(r, ty::TypeAndMut { ty: t, mutbl: mt.mutbl })
}
hir::TyKind::Never => tcx.types.never,
hir::TyKind::Tup(fields) => tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(t))),
hir::TyKind::BareFn(bf) => {
require_c_abi_if_c_variadic(tcx, bf.decl, bf.abi, ast_ty.span);
tcx.mk_fn_ptr(self.ty_of_fn(
ast_ty.hir_id,
bf.unsafety,
bf.abi,
bf.decl,
None,
Some(ast_ty),
))
}
hir::TyKind::TraitObject(bounds, ref lifetime, repr) => {
self.maybe_lint_bare_trait(ast_ty, in_path);
let repr = match repr {
TraitObjectSyntax::Dyn | TraitObjectSyntax::None => ty::Dyn,
TraitObjectSyntax::DynStar => ty::DynStar,
};
self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime, borrowed, repr)
}
hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
debug!(?maybe_qself, ?path);
let opt_self_ty = maybe_qself.as_ref().map(|qself| self.ast_ty_to_ty(qself));
self.res_to_ty(opt_self_ty, path, false)
}
hir::TyKind::OpaqueDef(item_id, lifetimes, in_trait) => {
let opaque_ty = tcx.hir().item(item_id);
let def_id = item_id.owner_id.to_def_id();
match opaque_ty.kind {
hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => {
self.impl_trait_ty_to_ty(def_id, lifetimes, origin, in_trait)
}
ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
}
}
hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
debug!(?qself, ?segment);
let ty = self.ast_ty_to_ty_inner(qself, false, true);
self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, qself, segment, false)
.map(|(ty, _, _)| ty)
.unwrap_or_else(|_| tcx.ty_error())
}
hir::TyKind::Path(hir::QPath::LangItem(lang_item, span, _)) => {
let def_id = tcx.require_lang_item(lang_item, Some(span));
let (substs, _) = self.create_substs_for_ast_path(
span,
def_id,
&[],
&hir::PathSegment::invalid(),
&GenericArgs::none(),
true,
None,
ty::BoundConstness::NotConst,
);
EarlyBinder(self.normalize_ty(span, tcx.at(span).type_of(def_id)))
.subst(tcx, substs)
}
hir::TyKind::Array(ref ty, ref length) => {
let length = match length {
&hir::ArrayLen::Infer(_, span) => self.ct_infer(tcx.types.usize, None, span),
hir::ArrayLen::Body(constant) => {
ty::Const::from_anon_const(tcx, constant.def_id)
}
};
let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(ty), length));
self.normalize_ty(ast_ty.span, array_ty)
}
hir::TyKind::Typeof(ref e) => {
let ty_erased = tcx.type_of(e.def_id);
let ty = tcx.fold_regions(ty_erased, |r, _| {
if r.is_erased() { tcx.lifetimes.re_static } else { r }
});
let span = ast_ty.span;
tcx.sess.emit_err(TypeofReservedKeywordUsed {
span,
ty,
opt_sugg: Some((span, Applicability::MachineApplicable))
.filter(|_| ty.is_suggestable(tcx, false)),
});
ty
}
hir::TyKind::Infer => {
// Infer also appears as the type of arguments or return
// values in an ExprKind::Closure, or as
// the type of local variables. Both of these cases are
// handled specially and will not descend into this routine.
self.ty_infer(None, ast_ty.span)
}
hir::TyKind::Err => tcx.ty_error(),
};
self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
result_ty
}
#[instrument(level = "debug", skip(self), ret)]
fn impl_trait_ty_to_ty(
&self,
def_id: DefId,
lifetimes: &[hir::GenericArg<'_>],
origin: OpaqueTyOrigin,
in_trait: bool,
) -> Ty<'tcx> {
debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
let tcx = self.tcx();
let generics = tcx.generics_of(def_id);
debug!("impl_trait_ty_to_ty: generics={:?}", generics);
let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
// Our own parameters are the resolved lifetimes.
let GenericParamDefKind::Lifetime { .. } = param.kind else { bug!() };
let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] else { bug!() };
self.ast_region_to_region(lifetime, None).into()
} else {
tcx.mk_param_from_def(param)
}
});
debug!("impl_trait_ty_to_ty: substs={:?}", substs);
if in_trait { tcx.mk_projection(def_id, substs) } else { tcx.mk_opaque(def_id, substs) }
}
pub fn ty_of_arg(&self, ty: &hir::Ty<'_>, expected_ty: Option<Ty<'tcx>>) -> Ty<'tcx> {
match ty.kind {
hir::TyKind::Infer if expected_ty.is_some() => {
self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
expected_ty.unwrap()
}
_ => self.ast_ty_to_ty(ty),
}
}
#[instrument(level = "debug", skip(self, hir_id, unsafety, abi, decl, generics, hir_ty), ret)]
pub fn ty_of_fn(
&self,
hir_id: hir::HirId,
unsafety: hir::Unsafety,
abi: abi::Abi,
decl: &hir::FnDecl<'_>,
generics: Option<&hir::Generics<'_>>,
hir_ty: Option<&hir::Ty<'_>>,
) -> ty::PolyFnSig<'tcx> {
let tcx = self.tcx();
let bound_vars = tcx.late_bound_vars(hir_id);
debug!(?bound_vars);
// We proactively collect all the inferred type params to emit a single error per fn def.
let mut visitor = HirPlaceholderCollector::default();
let mut infer_replacements = vec![];
if let Some(generics) = generics {
walk_generics(&mut visitor, generics);
}
let input_tys: Vec<_> = decl
.inputs
.iter()
.enumerate()
.map(|(i, a)| {
if let hir::TyKind::Infer = a.kind && !self.allow_ty_infer() {
if let Some(suggested_ty) =
self.suggest_trait_fn_ty_for_impl_fn_infer(hir_id, Some(i))
{
infer_replacements.push((a.span, suggested_ty.to_string()));
return suggested_ty;
}
}
// Only visit the type looking for `_` if we didn't fix the type above
visitor.visit_ty(a);
self.ty_of_arg(a, None)
})
.collect();
let output_ty = match decl.output {
hir::FnRetTy::Return(output) => {
if let hir::TyKind::Infer = output.kind
&& !self.allow_ty_infer()
&& let Some(suggested_ty) =
self.suggest_trait_fn_ty_for_impl_fn_infer(hir_id, None)
{
infer_replacements.push((output.span, suggested_ty.to_string()));
suggested_ty
} else {
visitor.visit_ty(output);
self.ast_ty_to_ty(output)
}
}
hir::FnRetTy::DefaultReturn(..) => tcx.mk_unit(),
};
debug!(?output_ty);
let fn_ty = tcx.mk_fn_sig(input_tys.into_iter(), output_ty, decl.c_variadic, unsafety, abi);
let bare_fn_ty = ty::Binder::bind_with_vars(fn_ty, bound_vars);
if !self.allow_ty_infer() && !(visitor.0.is_empty() && infer_replacements.is_empty()) {
// We always collect the spans for placeholder types when evaluating `fn`s, but we
// only want to emit an error complaining about them if infer types (`_`) are not
// allowed. `allow_ty_infer` gates this behavior. We check for the presence of
// `ident_span` to not emit an error twice when we have `fn foo(_: fn() -> _)`.
let mut diag = crate::collect::placeholder_type_error_diag(
tcx,
generics,
visitor.0,
infer_replacements.iter().map(|(s, _)| *s).collect(),
true,
hir_ty,
"function",
);
if !infer_replacements.is_empty() {
diag.multipart_suggestion(
&format!(
"try replacing `_` with the type{} in the corresponding trait method signature",
rustc_errors::pluralize!(infer_replacements.len()),
),
infer_replacements,
Applicability::MachineApplicable,
);
}
diag.emit();
}
// Find any late-bound regions declared in return type that do
// not appear in the arguments. These are not well-formed.
//
// Example:
// for<'a> fn() -> &'a str <-- 'a is bad
// for<'a> fn(&'a String) -> &'a str <-- 'a is ok
let inputs = bare_fn_ty.inputs();
let late_bound_in_args =
tcx.collect_constrained_late_bound_regions(&inputs.map_bound(|i| i.to_owned()));
let output = bare_fn_ty.output();
let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
self.validate_late_bound_regions(late_bound_in_args, late_bound_in_ret, |br_name| {
struct_span_err!(
tcx.sess,
decl.output.span(),
E0581,
"return type references {}, which is not constrained by the fn input types",
br_name
)
});
bare_fn_ty
}
/// Given a fn_hir_id for a impl function, suggest the type that is found on the
/// corresponding function in the trait that the impl implements, if it exists.
/// If arg_idx is Some, then it corresponds to an input type index, otherwise it
/// corresponds to the return type.
fn suggest_trait_fn_ty_for_impl_fn_infer(
&self,
fn_hir_id: hir::HirId,
arg_idx: Option<usize>,
) -> Option<Ty<'tcx>> {
let tcx = self.tcx();
let hir = tcx.hir();
let hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), ident, .. }) =
hir.get(fn_hir_id) else { return None };
let hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(i), .. }) =
hir.get(hir.get_parent_node(fn_hir_id)) else { bug!("ImplItem should have Impl parent") };
let trait_ref = self.instantiate_mono_trait_ref(
i.of_trait.as_ref()?,
self.ast_ty_to_ty(i.self_ty),
ty::BoundConstness::NotConst,
);
let assoc = tcx.associated_items(trait_ref.def_id).find_by_name_and_kind(
tcx,
*ident,
ty::AssocKind::Fn,
trait_ref.def_id,
)?;
let fn_sig = tcx.bound_fn_sig(assoc.def_id).subst(
tcx,
trait_ref.substs.extend_to(tcx, assoc.def_id, |param, _| tcx.mk_param_from_def(param)),
);
let ty = if let Some(arg_idx) = arg_idx { fn_sig.input(arg_idx) } else { fn_sig.output() };
Some(tcx.liberate_late_bound_regions(fn_hir_id.expect_owner().to_def_id(), ty))
}
#[instrument(level = "trace", skip(self, generate_err))]
fn validate_late_bound_regions(
&self,
constrained_regions: FxHashSet<ty::BoundRegionKind>,
referenced_regions: FxHashSet<ty::BoundRegionKind>,
generate_err: impl Fn(&str) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>,
) {
for br in referenced_regions.difference(&constrained_regions) {
let br_name = match *br {
ty::BrNamed(_, kw::UnderscoreLifetime) | ty::BrAnon(..) | ty::BrEnv => {
"an anonymous lifetime".to_string()
}
ty::BrNamed(_, name) => format!("lifetime `{}`", name),
};
let mut err = generate_err(&br_name);
if let ty::BrNamed(_, kw::UnderscoreLifetime) | ty::BrAnon(..) = *br {
// The only way for an anonymous lifetime to wind up
// in the return type but **also** be unconstrained is
// if it only appears in "associated types" in the
// input. See #47511 and #62200 for examples. In this case,
// though we can easily give a hint that ought to be
// relevant.
err.note(
"lifetimes appearing in an associated or opaque type are not considered constrained",
);
err.note("consider introducing a named lifetime parameter");
}
err.emit();
}
}
/// Given the bounds on an object, determines what single region bound (if any) we can
/// use to summarize this type. The basic idea is that we will use the bound the user
/// provided, if they provided one, and otherwise search the supertypes of trait bounds
/// for region bounds. It may be that we can derive no bound at all, in which case
/// we return `None`.
fn compute_object_lifetime_bound(
&self,
span: Span,
existential_predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
) -> Option<ty::Region<'tcx>> // if None, use the default
{
let tcx = self.tcx();
debug!("compute_opt_region_bound(existential_predicates={:?})", existential_predicates);
// No explicit region bound specified. Therefore, examine trait
// bounds and see if we can derive region bounds from those.
let derived_region_bounds = object_region_bounds(tcx, existential_predicates);
// If there are no derived region bounds, then report back that we
// can find no region bound. The caller will use the default.
if derived_region_bounds.is_empty() {
return None;
}
// If any of the derived region bounds are 'static, that is always
// the best choice.
if derived_region_bounds.iter().any(|r| r.is_static()) {
return Some(tcx.lifetimes.re_static);
}
// Determine whether there is exactly one unique region in the set
// of derived region bounds. If so, use that. Otherwise, report an
// error.
let r = derived_region_bounds[0];
if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
tcx.sess.emit_err(AmbiguousLifetimeBound { span });
}
Some(r)
}
/// Make sure that we are in the condition to suggest the blanket implementation.
fn maybe_lint_blanket_trait_impl(&self, self_ty: &hir::Ty<'_>, diag: &mut Diagnostic) {
let tcx = self.tcx();
let parent_id = tcx.hir().get_parent_item(self_ty.hir_id).def_id;
if let hir::Node::Item(hir::Item {
kind:
hir::ItemKind::Impl(hir::Impl {
self_ty: impl_self_ty, of_trait: Some(of_trait_ref), generics, ..
}),
..
}) = tcx.hir().get_by_def_id(parent_id) && self_ty.hir_id == impl_self_ty.hir_id
{
if !of_trait_ref.trait_def_id().map_or(false, |def_id| def_id.is_local()) {
return;
}
let of_trait_span = of_trait_ref.path.span;
// make sure that we are not calling unwrap to abort during the compilation
let Ok(impl_trait_name) = tcx.sess.source_map().span_to_snippet(self_ty.span) else { return; };
let Ok(of_trait_name) = tcx.sess.source_map().span_to_snippet(of_trait_span) else { return; };
// check if the trait has generics, to make a correct suggestion
let param_name = generics.params.next_type_param_name(None);
let add_generic_sugg = if let Some(span) = generics.span_for_param_suggestion() {
(span, format!(", {}: {}", param_name, impl_trait_name))
} else {
(generics.span, format!("<{}: {}>", param_name, impl_trait_name))
};
diag.multipart_suggestion(
format!("alternatively use a blanket \
implementation to implement `{of_trait_name}` for \
all types that also implement `{impl_trait_name}`"),
vec![
(self_ty.span, param_name),
add_generic_sugg,
],
Applicability::MaybeIncorrect,
);
}
}
fn maybe_lint_bare_trait(&self, self_ty: &hir::Ty<'_>, in_path: bool) {
let tcx = self.tcx();
if let hir::TyKind::TraitObject([poly_trait_ref, ..], _, TraitObjectSyntax::None) =
self_ty.kind
{
let needs_bracket = in_path
&& !tcx
.sess
.source_map()
.span_to_prev_source(self_ty.span)
.ok()
.map_or(false, |s| s.trim_end().ends_with('<'));
let is_global = poly_trait_ref.trait_ref.path.is_global();
let mut sugg = Vec::from_iter([(
self_ty.span.shrink_to_lo(),
format!(
"{}dyn {}",
if needs_bracket { "<" } else { "" },
if is_global { "(" } else { "" },
),
)]);
if is_global || needs_bracket {
sugg.push((
self_ty.span.shrink_to_hi(),
format!(
"{}{}",
if is_global { ")" } else { "" },
if needs_bracket { ">" } else { "" },
),
));
}
if self_ty.span.edition() >= Edition::Edition2021 {
let msg = "trait objects must include the `dyn` keyword";
let label = "add `dyn` keyword before this trait";
let mut diag =
rustc_errors::struct_span_err!(tcx.sess, self_ty.span, E0782, "{}", msg);
diag.multipart_suggestion_verbose(label, sugg, Applicability::MachineApplicable);
// check if the impl trait that we are considering is a impl of a local trait
self.maybe_lint_blanket_trait_impl(&self_ty, &mut diag);
diag.emit();
} else {
let msg = "trait objects without an explicit `dyn` are deprecated";
tcx.struct_span_lint_hir(
BARE_TRAIT_OBJECTS,
self_ty.hir_id,
self_ty.span,
msg,
|lint| {
lint.multipart_suggestion_verbose(
"use `dyn`",
sugg,
Applicability::MachineApplicable,
);
self.maybe_lint_blanket_trait_impl(&self_ty, lint);
lint
},
);
}
}
}
}
|