1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
/*!
# typeck: check phase
Within the check phase of type check, we check each item one at a time
(bodies of function expressions are checked as part of the containing
function). Inference is used to supply types wherever they are unknown.
By far the most complex case is checking the body of a function. This
can be broken down into several distinct phases:
- gather: creates type variables to represent the type of each local
variable and pattern binding.
- main: the main pass does the lion's share of the work: it
determines the types of all expressions, resolves
methods, checks for most invalid conditions, and so forth. In
some cases, where a type is unknown, it may create a type or region
variable and use that as the type of an expression.
In the process of checking, various constraints will be placed on
these type variables through the subtyping relationships requested
through the `demand` module. The `infer` module is in charge
of resolving those constraints.
- regionck: after main is complete, the regionck pass goes over all
types looking for regions and making sure that they did not escape
into places where they are not in scope. This may also influence the
final assignments of the various region variables if there is some
flexibility.
- writeback: writes the final types within a function body, replacing
type variables with their final inferred types. These final types
are written into the `tcx.node_types` table, which should *never* contain
any reference to a type variable.
## Intermediate types
While type checking a function, the intermediate types for the
expressions, blocks, and so forth contained within the function are
stored in `fcx.node_types` and `fcx.node_substs`. These types
may contain unresolved type variables. After type checking is
complete, the functions in the writeback module are used to take the
types from this table, resolve them, and then write them into their
permanent home in the type context `tcx`.
This means that during inferencing you should use `fcx.write_ty()`
and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
nodes within the function.
The types of top-level items, which never contain unbound type
variables, are stored directly into the `tcx` typeck_results.
N.B., a type variable is not the same thing as a type parameter. A
type variable is an instance of a type parameter. That is,
given a generic function `fn foo<T>(t: T)`, while checking the
function `foo`, the type `ty_param(0)` refers to the type `T`, which
is treated in abstract. However, when `foo()` is called, `T` will be
substituted for a fresh type variable `N`. This variable will
eventually be resolved to some concrete type (which might itself be
a type parameter).
*/
mod check;
mod compare_impl_item;
pub mod dropck;
pub mod intrinsic;
pub mod intrinsicck;
mod region;
pub mod wfcheck;
pub use check::check_abi;
use check::check_mod_item_types;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::{pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::Visitor;
use rustc_index::bit_set::BitSet;
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::ty::{InternalSubsts, SubstsRef};
use rustc_session::parse::feature_err;
use rustc_span::source_map::DUMMY_SP;
use rustc_span::symbol::{kw, Ident};
use rustc_span::{self, BytePos, Span, Symbol};
use rustc_target::abi::VariantIdx;
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits::error_reporting::suggestions::ReturnsVisitor;
use std::num::NonZeroU32;
use crate::require_c_abi_if_c_variadic;
use crate::util::common::indenter;
use self::compare_impl_item::collect_return_position_impl_trait_in_trait_tys;
use self::region::region_scope_tree;
pub fn provide(providers: &mut Providers) {
wfcheck::provide(providers);
*providers = Providers {
adt_destructor,
check_mod_item_types,
region_scope_tree,
collect_return_position_impl_trait_in_trait_tys,
compare_impl_const: compare_impl_item::compare_impl_const_raw,
check_generator_obligations: check::check_generator_obligations,
..*providers
};
}
fn adt_destructor(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::Destructor> {
tcx.calculate_dtor(def_id, dropck::check_drop_impl)
}
/// Given a `DefId` for an opaque type in return position, find its parent item's return
/// expressions.
fn get_owner_return_paths(
tcx: TyCtxt<'_>,
def_id: LocalDefId,
) -> Option<(LocalDefId, ReturnsVisitor<'_>)> {
let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
let parent_id = tcx.hir().get_parent_item(hir_id).def_id;
tcx.hir().find_by_def_id(parent_id).and_then(|node| node.body_id()).map(|body_id| {
let body = tcx.hir().body(body_id);
let mut visitor = ReturnsVisitor::default();
visitor.visit_body(body);
(parent_id, visitor)
})
}
/// Forbid defining intrinsics in Rust code,
/// as they must always be defined by the compiler.
// FIXME: Move this to a more appropriate place.
pub fn fn_maybe_err(tcx: TyCtxt<'_>, sp: Span, abi: Abi) {
if let Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
tcx.sess.span_err(sp, "intrinsic must be in `extern \"rust-intrinsic\" { ... }` block");
}
}
fn maybe_check_static_with_link_section(tcx: TyCtxt<'_>, id: LocalDefId) {
// Only restricted on wasm target for now
if !tcx.sess.target.is_like_wasm {
return;
}
// If `#[link_section]` is missing, then nothing to verify
let attrs = tcx.codegen_fn_attrs(id);
if attrs.link_section.is_none() {
return;
}
// For the wasm32 target statics with `#[link_section]` are placed into custom
// sections of the final output file, but this isn't link custom sections of
// other executable formats. Namely we can only embed a list of bytes,
// nothing with provenance (pointers to anything else). If any provenance
// show up, reject it here.
// `#[link_section]` may contain arbitrary, or even undefined bytes, but it is
// the consumer's responsibility to ensure all bytes that have been read
// have defined values.
if let Ok(alloc) = tcx.eval_static_initializer(id.to_def_id())
&& alloc.inner().provenance().ptrs().len() != 0
{
let msg = "statics with a custom `#[link_section]` must be a \
simple list of bytes on the wasm target with no \
extra levels of indirection such as references";
tcx.sess.span_err(tcx.def_span(id), msg);
}
}
fn report_forbidden_specialization(tcx: TyCtxt<'_>, impl_item: DefId, parent_impl: DefId) {
let span = tcx.def_span(impl_item);
let ident = tcx.item_name(impl_item);
let mut err = struct_span_err!(
tcx.sess,
span,
E0520,
"`{}` specializes an item from a parent `impl`, but that item is not marked `default`",
ident,
);
err.span_label(span, format!("cannot specialize default item `{}`", ident));
match tcx.span_of_impl(parent_impl) {
Ok(span) => {
err.span_label(span, "parent `impl` is here");
err.note(&format!(
"to specialize, `{}` in the parent `impl` must be marked `default`",
ident
));
}
Err(cname) => {
err.note(&format!("parent implementation is in crate `{cname}`"));
}
}
err.emit();
}
fn missing_items_err(
tcx: TyCtxt<'_>,
impl_span: Span,
missing_items: &[ty::AssocItem],
full_impl_span: Span,
) {
let missing_items_msg = missing_items
.iter()
.map(|trait_item| trait_item.name.to_string())
.collect::<Vec<_>>()
.join("`, `");
let mut err = struct_span_err!(
tcx.sess,
impl_span,
E0046,
"not all trait items implemented, missing: `{missing_items_msg}`",
);
err.span_label(impl_span, format!("missing `{missing_items_msg}` in implementation"));
// `Span` before impl block closing brace.
let hi = full_impl_span.hi() - BytePos(1);
// Point at the place right before the closing brace of the relevant `impl` to suggest
// adding the associated item at the end of its body.
let sugg_sp = full_impl_span.with_lo(hi).with_hi(hi);
// Obtain the level of indentation ending in `sugg_sp`.
let padding =
tcx.sess.source_map().indentation_before(sugg_sp).unwrap_or_else(|| String::new());
for &trait_item in missing_items {
let snippet = suggestion_signature(trait_item, tcx);
let code = format!("{}{}\n{}", padding, snippet, padding);
let msg = format!("implement the missing item: `{snippet}`");
let appl = Applicability::HasPlaceholders;
if let Some(span) = tcx.hir().span_if_local(trait_item.def_id) {
err.span_label(span, format!("`{}` from trait", trait_item.name));
err.tool_only_span_suggestion(sugg_sp, &msg, code, appl);
} else {
err.span_suggestion_hidden(sugg_sp, &msg, code, appl);
}
}
err.emit();
}
fn missing_items_must_implement_one_of_err(
tcx: TyCtxt<'_>,
impl_span: Span,
missing_items: &[Ident],
annotation_span: Option<Span>,
) {
let missing_items_msg =
missing_items.iter().map(Ident::to_string).collect::<Vec<_>>().join("`, `");
let mut err = struct_span_err!(
tcx.sess,
impl_span,
E0046,
"not all trait items implemented, missing one of: `{missing_items_msg}`",
);
err.span_label(impl_span, format!("missing one of `{missing_items_msg}` in implementation"));
if let Some(annotation_span) = annotation_span {
err.span_note(annotation_span, "required because of this annotation");
}
err.emit();
}
fn default_body_is_unstable(
tcx: TyCtxt<'_>,
impl_span: Span,
item_did: DefId,
feature: Symbol,
reason: Option<Symbol>,
issue: Option<NonZeroU32>,
) {
let missing_item_name = tcx.associated_item(item_did).name;
let use_of_unstable_library_feature_note = match reason {
Some(r) => format!("use of unstable library feature '{feature}': {r}"),
None => format!("use of unstable library feature '{feature}'"),
};
let mut err = struct_span_err!(
tcx.sess,
impl_span,
E0046,
"not all trait items implemented, missing: `{missing_item_name}`",
);
err.note(format!("default implementation of `{missing_item_name}` is unstable"));
err.note(use_of_unstable_library_feature_note);
rustc_session::parse::add_feature_diagnostics_for_issue(
&mut err,
&tcx.sess.parse_sess,
feature,
rustc_feature::GateIssue::Library(issue),
);
err.emit();
}
/// Re-sugar `ty::GenericPredicates` in a way suitable to be used in structured suggestions.
fn bounds_from_generic_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
predicates: ty::GenericPredicates<'tcx>,
) -> (String, String) {
let mut types: FxHashMap<Ty<'tcx>, Vec<DefId>> = FxHashMap::default();
let mut projections = vec![];
for (predicate, _) in predicates.predicates {
debug!("predicate {:?}", predicate);
let bound_predicate = predicate.kind();
match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::Clause::Trait(trait_predicate)) => {
let entry = types.entry(trait_predicate.self_ty()).or_default();
let def_id = trait_predicate.def_id();
if Some(def_id) != tcx.lang_items().sized_trait() {
// Type params are `Sized` by default, do not add that restriction to the list
// if it is a positive requirement.
entry.push(trait_predicate.def_id());
}
}
ty::PredicateKind::Clause(ty::Clause::Projection(projection_pred)) => {
projections.push(bound_predicate.rebind(projection_pred));
}
_ => {}
}
}
let generics = if types.is_empty() {
"".to_string()
} else {
format!(
"<{}>",
types
.keys()
.filter_map(|t| match t.kind() {
ty::Param(_) => Some(t.to_string()),
// Avoid suggesting the following:
// fn foo<T, <T as Trait>::Bar>(_: T) where T: Trait, <T as Trait>::Bar: Other {}
_ => None,
})
.collect::<Vec<_>>()
.join(", ")
)
};
let mut where_clauses = vec![];
for (ty, bounds) in types {
where_clauses
.extend(bounds.into_iter().map(|bound| format!("{}: {}", ty, tcx.def_path_str(bound))));
}
for projection in &projections {
let p = projection.skip_binder();
// FIXME: this is not currently supported syntax, we should be looking at the `types` and
// insert the associated types where they correspond, but for now let's be "lazy" and
// propose this instead of the following valid resugaring:
// `T: Trait, Trait::Assoc = K` → `T: Trait<Assoc = K>`
where_clauses.push(format!("{} = {}", tcx.def_path_str(p.projection_ty.def_id), p.term));
}
let where_clauses = if where_clauses.is_empty() {
String::new()
} else {
format!(" where {}", where_clauses.join(", "))
};
(generics, where_clauses)
}
/// Return placeholder code for the given function.
fn fn_sig_suggestion<'tcx>(
tcx: TyCtxt<'tcx>,
sig: ty::FnSig<'tcx>,
ident: Ident,
predicates: ty::GenericPredicates<'tcx>,
assoc: ty::AssocItem,
) -> String {
let args = sig
.inputs()
.iter()
.enumerate()
.map(|(i, ty)| {
Some(match ty.kind() {
ty::Param(_) if assoc.fn_has_self_parameter && i == 0 => "self".to_string(),
ty::Ref(reg, ref_ty, mutability) if i == 0 => {
let reg = format!("{reg} ");
let reg = match ®[..] {
"'_ " | " " => "",
reg => reg,
};
if assoc.fn_has_self_parameter {
match ref_ty.kind() {
ty::Param(param) if param.name == kw::SelfUpper => {
format!("&{}{}self", reg, mutability.prefix_str())
}
_ => format!("self: {ty}"),
}
} else {
format!("_: {ty}")
}
}
_ => {
if assoc.fn_has_self_parameter && i == 0 {
format!("self: {ty}")
} else {
format!("_: {ty}")
}
}
})
})
.chain(std::iter::once(if sig.c_variadic { Some("...".to_string()) } else { None }))
.flatten()
.collect::<Vec<String>>()
.join(", ");
let output = sig.output();
let output = if !output.is_unit() { format!(" -> {output}") } else { String::new() };
let unsafety = sig.unsafety.prefix_str();
let (generics, where_clauses) = bounds_from_generic_predicates(tcx, predicates);
// FIXME: this is not entirely correct, as the lifetimes from borrowed params will
// not be present in the `fn` definition, not will we account for renamed
// lifetimes between the `impl` and the `trait`, but this should be good enough to
// fill in a significant portion of the missing code, and other subsequent
// suggestions can help the user fix the code.
format!("{unsafety}fn {ident}{generics}({args}){output}{where_clauses} {{ todo!() }}")
}
pub fn ty_kind_suggestion(ty: Ty<'_>) -> Option<&'static str> {
Some(match ty.kind() {
ty::Bool => "true",
ty::Char => "'a'",
ty::Int(_) | ty::Uint(_) => "42",
ty::Float(_) => "3.14159",
ty::Error(_) | ty::Never => return None,
_ => "value",
})
}
/// Return placeholder code for the given associated item.
/// Similar to `ty::AssocItem::suggestion`, but appropriate for use as the code snippet of a
/// structured suggestion.
fn suggestion_signature(assoc: ty::AssocItem, tcx: TyCtxt<'_>) -> String {
match assoc.kind {
ty::AssocKind::Fn => {
// We skip the binder here because the binder would deanonymize all
// late-bound regions, and we don't want method signatures to show up
// `as for<'r> fn(&'r MyType)`. Pretty-printing handles late-bound
// regions just fine, showing `fn(&MyType)`.
fn_sig_suggestion(
tcx,
tcx.fn_sig(assoc.def_id).subst_identity().skip_binder(),
assoc.ident(tcx),
tcx.predicates_of(assoc.def_id),
assoc,
)
}
ty::AssocKind::Type => format!("type {} = Type;", assoc.name),
ty::AssocKind::Const => {
let ty = tcx.type_of(assoc.def_id).subst_identity();
let val = ty_kind_suggestion(ty).unwrap_or("value");
format!("const {}: {} = {};", assoc.name, ty, val)
}
}
}
/// Emit an error when encountering two or more variants in a transparent enum.
fn bad_variant_count<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>, sp: Span, did: DefId) {
let variant_spans: Vec<_> = adt
.variants()
.iter()
.map(|variant| tcx.hir().span_if_local(variant.def_id).unwrap())
.collect();
let msg = format!("needs exactly one variant, but has {}", adt.variants().len(),);
let mut err = struct_span_err!(tcx.sess, sp, E0731, "transparent enum {msg}");
err.span_label(sp, &msg);
if let [start @ .., end] = &*variant_spans {
for variant_span in start {
err.span_label(*variant_span, "");
}
err.span_label(*end, &format!("too many variants in `{}`", tcx.def_path_str(did)));
}
err.emit();
}
/// Emit an error when encountering two or more non-zero-sized fields in a transparent
/// enum.
fn bad_non_zero_sized_fields<'tcx>(
tcx: TyCtxt<'tcx>,
adt: ty::AdtDef<'tcx>,
field_count: usize,
field_spans: impl Iterator<Item = Span>,
sp: Span,
) {
let msg = format!("needs at most one non-zero-sized field, but has {field_count}");
let mut err = struct_span_err!(
tcx.sess,
sp,
E0690,
"{}transparent {} {}",
if adt.is_enum() { "the variant of a " } else { "" },
adt.descr(),
msg,
);
err.span_label(sp, &msg);
for sp in field_spans {
err.span_label(sp, "this field is non-zero-sized");
}
err.emit();
}
// FIXME: Consider moving this method to a more fitting place.
pub fn potentially_plural_count(count: usize, word: &str) -> String {
format!("{} {}{}", count, word, pluralize!(count))
}
|