1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
|
//! There are four type combiners: [Equate], [Sub], [Lub], and [Glb].
//! Each implements the trait [TypeRelation] and contains methods for
//! combining two instances of various things and yielding a new instance.
//! These combiner methods always yield a `Result<T>`. To relate two
//! types, you can use `infcx.at(cause, param_env)` which then allows
//! you to use the relevant methods of [At](super::at::At).
//!
//! Combiners mostly do their specific behavior and then hand off the
//! bulk of the work to [InferCtxt::super_combine_tys] and
//! [InferCtxt::super_combine_consts].
//!
//! Combining two types may have side-effects on the inference contexts
//! which can be undone by using snapshots. You probably want to use
//! either [InferCtxt::commit_if_ok] or [InferCtxt::probe].
//!
//! On success, the LUB/GLB operations return the appropriate bound. The
//! return value of `Equate` or `Sub` shouldn't really be used.
//!
//! ## Contravariance
//!
//! We explicitly track which argument is expected using
//! [TypeRelation::a_is_expected], so when dealing with contravariance
//! this should be correctly updated.
use super::equate::Equate;
use super::glb::Glb;
use super::lub::Lub;
use super::sub::Sub;
use super::type_variable::TypeVariableValue;
use super::{DefineOpaqueTypes, InferCtxt, MiscVariable, TypeTrace};
use crate::traits::{Obligation, PredicateObligations};
use rustc_data_structures::sso::SsoHashMap;
use rustc_hir::def_id::DefId;
use rustc_middle::infer::canonical::OriginalQueryValues;
use rustc_middle::infer::unify_key::{ConstVarValue, ConstVariableValue};
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
use rustc_middle::traits::ObligationCause;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::relate::{self, Relate, RelateResult, TypeRelation};
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{
self, AliasKind, FallibleTypeFolder, InferConst, ToPredicate, Ty, TyCtxt, TypeFoldable,
TypeSuperFoldable, TypeVisitableExt,
};
use rustc_middle::ty::{IntType, UintType};
use rustc_span::{Span, DUMMY_SP};
#[derive(Clone)]
pub struct CombineFields<'infcx, 'tcx> {
pub infcx: &'infcx InferCtxt<'tcx>,
pub trace: TypeTrace<'tcx>,
pub cause: Option<ty::relate::Cause>,
pub param_env: ty::ParamEnv<'tcx>,
pub obligations: PredicateObligations<'tcx>,
pub define_opaque_types: DefineOpaqueTypes,
}
#[derive(Copy, Clone, Debug)]
pub enum RelationDir {
SubtypeOf,
SupertypeOf,
EqTo,
}
impl<'tcx> InferCtxt<'tcx> {
pub fn super_combine_tys<R>(
&self,
relation: &mut R,
a: Ty<'tcx>,
b: Ty<'tcx>,
) -> RelateResult<'tcx, Ty<'tcx>>
where
R: ObligationEmittingRelation<'tcx>,
{
let a_is_expected = relation.a_is_expected();
match (a.kind(), b.kind()) {
// Relate integral variables to other types
(&ty::Infer(ty::IntVar(a_id)), &ty::Infer(ty::IntVar(b_id))) => {
self.inner
.borrow_mut()
.int_unification_table()
.unify_var_var(a_id, b_id)
.map_err(|e| int_unification_error(a_is_expected, e))?;
Ok(a)
}
(&ty::Infer(ty::IntVar(v_id)), &ty::Int(v)) => {
self.unify_integral_variable(a_is_expected, v_id, IntType(v))
}
(&ty::Int(v), &ty::Infer(ty::IntVar(v_id))) => {
self.unify_integral_variable(!a_is_expected, v_id, IntType(v))
}
(&ty::Infer(ty::IntVar(v_id)), &ty::Uint(v)) => {
self.unify_integral_variable(a_is_expected, v_id, UintType(v))
}
(&ty::Uint(v), &ty::Infer(ty::IntVar(v_id))) => {
self.unify_integral_variable(!a_is_expected, v_id, UintType(v))
}
// Relate floating-point variables to other types
(&ty::Infer(ty::FloatVar(a_id)), &ty::Infer(ty::FloatVar(b_id))) => {
self.inner
.borrow_mut()
.float_unification_table()
.unify_var_var(a_id, b_id)
.map_err(|e| float_unification_error(relation.a_is_expected(), e))?;
Ok(a)
}
(&ty::Infer(ty::FloatVar(v_id)), &ty::Float(v)) => {
self.unify_float_variable(a_is_expected, v_id, v)
}
(&ty::Float(v), &ty::Infer(ty::FloatVar(v_id))) => {
self.unify_float_variable(!a_is_expected, v_id, v)
}
// We don't expect `TyVar` or `Fresh*` vars at this point with lazy norm.
(
ty::Alias(AliasKind::Projection, _),
ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)),
)
| (
ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)),
ty::Alias(AliasKind::Projection, _),
) if self.tcx.trait_solver_next() => {
bug!()
}
(_, ty::Alias(AliasKind::Projection, _)) | (ty::Alias(AliasKind::Projection, _), _)
if self.tcx.trait_solver_next() =>
{
relation.register_type_relate_obligation(a, b);
Ok(a)
}
// All other cases of inference are errors
(&ty::Infer(_), _) | (_, &ty::Infer(_)) => {
Err(TypeError::Sorts(ty::relate::expected_found(relation, a, b)))
}
// During coherence, opaque types should be treated as *possibly*
// equal to each other, even if their generic params differ, as
// they could resolve to the same hidden type, even for different
// generic params.
(
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
) if self.intercrate && a_def_id == b_def_id => {
relation.register_predicates([ty::Binder::dummy(ty::PredicateKind::Ambiguous)]);
Ok(a)
}
_ => ty::relate::super_relate_tys(relation, a, b),
}
}
pub fn super_combine_consts<R>(
&self,
relation: &mut R,
a: ty::Const<'tcx>,
b: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>>
where
R: ObligationEmittingRelation<'tcx>,
{
debug!("{}.consts({:?}, {:?})", relation.tag(), a, b);
if a == b {
return Ok(a);
}
let a = self.shallow_resolve(a);
let b = self.shallow_resolve(b);
// We should never have to relate the `ty` field on `Const` as it is checked elsewhere that consts have the
// correct type for the generic param they are an argument for. However there have been a number of cases
// historically where asserting that the types are equal has found bugs in the compiler so this is valuable
// to check even if it is a bit nasty impl wise :(
//
// This probe is probably not strictly necessary but it seems better to be safe and not accidentally find
// ourselves with a check to find bugs being required for code to compile because it made inference progress.
let compatible_types = self.probe(|_| {
if a.ty() == b.ty() {
return Ok(());
}
// We don't have access to trait solving machinery in `rustc_infer` so the logic for determining if the
// two const param's types are able to be equal has to go through a canonical query with the actual logic
// in `rustc_trait_selection`.
let canonical = self.canonicalize_query(
(relation.param_env(), a.ty(), b.ty()),
&mut OriginalQueryValues::default(),
);
self.tcx.check_tys_might_be_eq(canonical).map_err(|_| {
self.tcx.sess.delay_span_bug(
DUMMY_SP,
&format!("cannot relate consts of different types (a={:?}, b={:?})", a, b,),
)
})
});
// If the consts have differing types, just bail with a const error with
// the expected const's type. Specifically, we don't want const infer vars
// to do any type shapeshifting before and after resolution.
if let Err(guar) = compatible_types {
// HACK: equating both sides with `[const error]` eagerly prevents us
// from leaving unconstrained inference vars during things like impl
// matching in the solver.
let a_error = self.tcx.const_error_with_guaranteed(a.ty(), guar);
if let ty::ConstKind::Infer(InferConst::Var(vid)) = a.kind() {
return self.unify_const_variable(vid, a_error);
}
let b_error = self.tcx.const_error_with_guaranteed(b.ty(), guar);
if let ty::ConstKind::Infer(InferConst::Var(vid)) = b.kind() {
return self.unify_const_variable(vid, b_error);
}
return Ok(if relation.a_is_expected() { a_error } else { b_error });
}
match (a.kind(), b.kind()) {
(
ty::ConstKind::Infer(InferConst::Var(a_vid)),
ty::ConstKind::Infer(InferConst::Var(b_vid)),
) => {
self.inner.borrow_mut().const_unification_table().union(a_vid, b_vid);
return Ok(a);
}
// All other cases of inference with other variables are errors.
(ty::ConstKind::Infer(InferConst::Var(_)), ty::ConstKind::Infer(_))
| (ty::ConstKind::Infer(_), ty::ConstKind::Infer(InferConst::Var(_))) => {
bug!("tried to combine ConstKind::Infer/ConstKind::Infer(InferConst::Var)")
}
(ty::ConstKind::Infer(InferConst::Var(vid)), _) => {
return self.unify_const_variable(vid, b);
}
(_, ty::ConstKind::Infer(InferConst::Var(vid))) => {
return self.unify_const_variable(vid, a);
}
(ty::ConstKind::Unevaluated(..), _) if self.tcx.lazy_normalization() => {
// FIXME(#59490): Need to remove the leak check to accommodate
// escaping bound variables here.
if !a.has_escaping_bound_vars() && !b.has_escaping_bound_vars() {
relation.register_const_equate_obligation(a, b);
}
return Ok(b);
}
(_, ty::ConstKind::Unevaluated(..)) if self.tcx.lazy_normalization() => {
// FIXME(#59490): Need to remove the leak check to accommodate
// escaping bound variables here.
if !a.has_escaping_bound_vars() && !b.has_escaping_bound_vars() {
relation.register_const_equate_obligation(a, b);
}
return Ok(a);
}
_ => {}
}
ty::relate::super_relate_consts(relation, a, b)
}
/// Unifies the const variable `target_vid` with the given constant.
///
/// This also tests if the given const `ct` contains an inference variable which was previously
/// unioned with `target_vid`. If this is the case, inferring `target_vid` to `ct`
/// would result in an infinite type as we continuously replace an inference variable
/// in `ct` with `ct` itself.
///
/// This is especially important as unevaluated consts use their parents generics.
/// They therefore often contain unused substs, making these errors far more likely.
///
/// A good example of this is the following:
///
/// ```compile_fail,E0308
/// #![feature(generic_const_exprs)]
///
/// fn bind<const N: usize>(value: [u8; N]) -> [u8; 3 + 4] {
/// todo!()
/// }
///
/// fn main() {
/// let mut arr = Default::default();
/// arr = bind(arr);
/// }
/// ```
///
/// Here `3 + 4` ends up as `ConstKind::Unevaluated` which uses the generics
/// of `fn bind` (meaning that its substs contain `N`).
///
/// `bind(arr)` now infers that the type of `arr` must be `[u8; N]`.
/// The assignment `arr = bind(arr)` now tries to equate `N` with `3 + 4`.
///
/// As `3 + 4` contains `N` in its substs, this must not succeed.
///
/// See `tests/ui/const-generics/occurs-check/` for more examples where this is relevant.
#[instrument(level = "debug", skip(self))]
fn unify_const_variable(
&self,
target_vid: ty::ConstVid<'tcx>,
ct: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>> {
let (for_universe, span) = {
let mut inner = self.inner.borrow_mut();
let variable_table = &mut inner.const_unification_table();
let var_value = variable_table.probe_value(target_vid);
match var_value.val {
ConstVariableValue::Known { value } => {
bug!("instantiating {:?} which has a known value {:?}", target_vid, value)
}
ConstVariableValue::Unknown { universe } => (universe, var_value.origin.span),
}
};
let value = ct.try_fold_with(&mut ConstInferUnifier {
infcx: self,
span,
for_universe,
target_vid,
})?;
self.inner.borrow_mut().const_unification_table().union_value(
target_vid,
ConstVarValue {
origin: ConstVariableOrigin {
kind: ConstVariableOriginKind::ConstInference,
span: DUMMY_SP,
},
val: ConstVariableValue::Known { value },
},
);
Ok(value)
}
fn unify_integral_variable(
&self,
vid_is_expected: bool,
vid: ty::IntVid,
val: ty::IntVarValue,
) -> RelateResult<'tcx, Ty<'tcx>> {
self.inner
.borrow_mut()
.int_unification_table()
.unify_var_value(vid, Some(val))
.map_err(|e| int_unification_error(vid_is_expected, e))?;
match val {
IntType(v) => Ok(self.tcx.mk_mach_int(v)),
UintType(v) => Ok(self.tcx.mk_mach_uint(v)),
}
}
fn unify_float_variable(
&self,
vid_is_expected: bool,
vid: ty::FloatVid,
val: ty::FloatTy,
) -> RelateResult<'tcx, Ty<'tcx>> {
self.inner
.borrow_mut()
.float_unification_table()
.unify_var_value(vid, Some(ty::FloatVarValue(val)))
.map_err(|e| float_unification_error(vid_is_expected, e))?;
Ok(self.tcx.mk_mach_float(val))
}
}
impl<'infcx, 'tcx> CombineFields<'infcx, 'tcx> {
pub fn tcx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
pub fn equate<'a>(&'a mut self, a_is_expected: bool) -> Equate<'a, 'infcx, 'tcx> {
Equate::new(self, a_is_expected)
}
pub fn sub<'a>(&'a mut self, a_is_expected: bool) -> Sub<'a, 'infcx, 'tcx> {
Sub::new(self, a_is_expected)
}
pub fn lub<'a>(&'a mut self, a_is_expected: bool) -> Lub<'a, 'infcx, 'tcx> {
Lub::new(self, a_is_expected)
}
pub fn glb<'a>(&'a mut self, a_is_expected: bool) -> Glb<'a, 'infcx, 'tcx> {
Glb::new(self, a_is_expected)
}
/// Here, `dir` is either `EqTo`, `SubtypeOf`, or `SupertypeOf`.
/// The idea is that we should ensure that the type `a_ty` is equal
/// to, a subtype of, or a supertype of (respectively) the type
/// to which `b_vid` is bound.
///
/// Since `b_vid` has not yet been instantiated with a type, we
/// will first instantiate `b_vid` with a *generalized* version
/// of `a_ty`. Generalization introduces other inference
/// variables wherever subtyping could occur.
#[instrument(skip(self), level = "debug")]
pub fn instantiate(
&mut self,
a_ty: Ty<'tcx>,
dir: RelationDir,
b_vid: ty::TyVid,
a_is_expected: bool,
) -> RelateResult<'tcx, ()> {
use self::RelationDir::*;
// Get the actual variable that b_vid has been inferred to
debug_assert!(self.infcx.inner.borrow_mut().type_variables().probe(b_vid).is_unknown());
// Generalize type of `a_ty` appropriately depending on the
// direction. As an example, assume:
//
// - `a_ty == &'x ?1`, where `'x` is some free region and `?1` is an
// inference variable,
// - and `dir` == `SubtypeOf`.
//
// Then the generalized form `b_ty` would be `&'?2 ?3`, where
// `'?2` and `?3` are fresh region/type inference
// variables. (Down below, we will relate `a_ty <: b_ty`,
// adding constraints like `'x: '?2` and `?1 <: ?3`.)
let Generalization { ty: b_ty, needs_wf } = self.generalize(a_ty, b_vid, dir)?;
debug!(?b_ty);
self.infcx.inner.borrow_mut().type_variables().instantiate(b_vid, b_ty);
if needs_wf {
self.obligations.push(Obligation::new(
self.tcx(),
self.trace.cause.clone(),
self.param_env,
ty::Binder::dummy(ty::PredicateKind::WellFormed(b_ty.into())),
));
}
// Finally, relate `b_ty` to `a_ty`, as described in previous comment.
//
// FIXME(#16847): This code is non-ideal because all these subtype
// relations wind up attributed to the same spans. We need
// to associate causes/spans with each of the relations in
// the stack to get this right.
match dir {
EqTo => self.equate(a_is_expected).relate(a_ty, b_ty),
SubtypeOf => self.sub(a_is_expected).relate(a_ty, b_ty),
SupertypeOf => self.sub(a_is_expected).relate_with_variance(
ty::Contravariant,
ty::VarianceDiagInfo::default(),
a_ty,
b_ty,
),
}?;
Ok(())
}
/// Attempts to generalize `ty` for the type variable `for_vid`.
/// This checks for cycle -- that is, whether the type `ty`
/// references `for_vid`. The `dir` is the "direction" for which we
/// a performing the generalization (i.e., are we producing a type
/// that can be used as a supertype etc).
///
/// Preconditions:
///
/// - `for_vid` is a "root vid"
#[instrument(skip(self), level = "trace", ret)]
fn generalize(
&self,
ty: Ty<'tcx>,
for_vid: ty::TyVid,
dir: RelationDir,
) -> RelateResult<'tcx, Generalization<'tcx>> {
// Determine the ambient variance within which `ty` appears.
// The surrounding equation is:
//
// ty [op] ty2
//
// where `op` is either `==`, `<:`, or `:>`. This maps quite
// naturally.
let ambient_variance = match dir {
RelationDir::EqTo => ty::Invariant,
RelationDir::SubtypeOf => ty::Covariant,
RelationDir::SupertypeOf => ty::Contravariant,
};
trace!(?ambient_variance);
let for_universe = match self.infcx.inner.borrow_mut().type_variables().probe(for_vid) {
v @ TypeVariableValue::Known { .. } => {
bug!("instantiating {:?} which has a known value {:?}", for_vid, v,)
}
TypeVariableValue::Unknown { universe } => universe,
};
trace!(?for_universe);
trace!(?self.trace);
let mut generalize = Generalizer {
infcx: self.infcx,
cause: &self.trace.cause,
for_vid_sub_root: self.infcx.inner.borrow_mut().type_variables().sub_root_var(for_vid),
for_universe,
ambient_variance,
needs_wf: false,
root_ty: ty,
param_env: self.param_env,
cache: SsoHashMap::new(),
};
let ty = generalize.relate(ty, ty)?;
let needs_wf = generalize.needs_wf;
Ok(Generalization { ty, needs_wf })
}
pub fn register_obligations(&mut self, obligations: PredicateObligations<'tcx>) {
self.obligations.extend(obligations.into_iter());
}
pub fn register_predicates(&mut self, obligations: impl IntoIterator<Item: ToPredicate<'tcx>>) {
self.obligations.extend(obligations.into_iter().map(|to_pred| {
Obligation::new(self.infcx.tcx, self.trace.cause.clone(), self.param_env, to_pred)
}))
}
}
struct Generalizer<'cx, 'tcx> {
infcx: &'cx InferCtxt<'tcx>,
/// The span, used when creating new type variables and things.
cause: &'cx ObligationCause<'tcx>,
/// The vid of the type variable that is in the process of being
/// instantiated; if we find this within the type we are folding,
/// that means we would have created a cyclic type.
for_vid_sub_root: ty::TyVid,
/// The universe of the type variable that is in the process of
/// being instantiated. Any fresh variables that we create in this
/// process should be in that same universe.
for_universe: ty::UniverseIndex,
/// Track the variance as we descend into the type.
ambient_variance: ty::Variance,
/// See the field `needs_wf` in `Generalization`.
needs_wf: bool,
/// The root type that we are generalizing. Used when reporting cycles.
root_ty: Ty<'tcx>,
param_env: ty::ParamEnv<'tcx>,
cache: SsoHashMap<Ty<'tcx>, Ty<'tcx>>,
}
/// Result from a generalization operation. This includes
/// not only the generalized type, but also a bool flag
/// indicating whether further WF checks are needed.
#[derive(Debug)]
struct Generalization<'tcx> {
ty: Ty<'tcx>,
/// If true, then the generalized type may not be well-formed,
/// even if the source type is well-formed, so we should add an
/// additional check to enforce that it is. This arises in
/// particular around 'bivariant' type parameters that are only
/// constrained by a where-clause. As an example, imagine a type:
///
/// struct Foo<A, B> where A: Iterator<Item = B> {
/// data: A
/// }
///
/// here, `A` will be covariant, but `B` is
/// unconstrained. However, whatever it is, for `Foo` to be WF, it
/// must be equal to `A::Item`. If we have an input `Foo<?A, ?B>`,
/// then after generalization we will wind up with a type like
/// `Foo<?C, ?D>`. When we enforce that `Foo<?A, ?B> <: Foo<?C,
/// ?D>` (or `>:`), we will wind up with the requirement that `?A
/// <: ?C`, but no particular relationship between `?B` and `?D`
/// (after all, we do not know the variance of the normalized form
/// of `A::Item` with respect to `A`). If we do nothing else, this
/// may mean that `?D` goes unconstrained (as in #41677). So, in
/// this scenario where we create a new type variable in a
/// bivariant context, we set the `needs_wf` flag to true. This
/// will force the calling code to check that `WF(Foo<?C, ?D>)`
/// holds, which in turn implies that `?C::Item == ?D`. So once
/// `?C` is constrained, that should suffice to restrict `?D`.
needs_wf: bool,
}
impl<'tcx> TypeRelation<'tcx> for Generalizer<'_, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.param_env
}
fn tag(&self) -> &'static str {
"Generalizer"
}
fn a_is_expected(&self) -> bool {
true
}
fn binders<T>(
&mut self,
a: ty::Binder<'tcx, T>,
b: ty::Binder<'tcx, T>,
) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
where
T: Relate<'tcx>,
{
Ok(a.rebind(self.relate(a.skip_binder(), b.skip_binder())?))
}
fn relate_item_substs(
&mut self,
item_def_id: DefId,
a_subst: SubstsRef<'tcx>,
b_subst: SubstsRef<'tcx>,
) -> RelateResult<'tcx, SubstsRef<'tcx>> {
if self.ambient_variance == ty::Variance::Invariant {
// Avoid fetching the variance if we are in an invariant
// context; no need, and it can induce dependency cycles
// (e.g., #41849).
relate::relate_substs(self, a_subst, b_subst)
} else {
let tcx = self.tcx();
let opt_variances = tcx.variances_of(item_def_id);
relate::relate_substs_with_variances(
self,
item_def_id,
&opt_variances,
a_subst,
b_subst,
true,
)
}
}
fn relate_with_variance<T: Relate<'tcx>>(
&mut self,
variance: ty::Variance,
_info: ty::VarianceDiagInfo<'tcx>,
a: T,
b: T,
) -> RelateResult<'tcx, T> {
let old_ambient_variance = self.ambient_variance;
self.ambient_variance = self.ambient_variance.xform(variance);
let result = self.relate(a, b);
self.ambient_variance = old_ambient_variance;
result
}
fn tys(&mut self, t: Ty<'tcx>, t2: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
assert_eq!(t, t2); // we are abusing TypeRelation here; both LHS and RHS ought to be ==
if let Some(&result) = self.cache.get(&t) {
return Ok(result);
}
debug!("generalize: t={:?}", t);
// Check to see whether the type we are generalizing references
// any other type variable related to `vid` via
// subtyping. This is basically our "occurs check", preventing
// us from creating infinitely sized types.
let result = match *t.kind() {
ty::Infer(ty::TyVar(vid)) => {
let vid = self.infcx.inner.borrow_mut().type_variables().root_var(vid);
let sub_vid = self.infcx.inner.borrow_mut().type_variables().sub_root_var(vid);
if sub_vid == self.for_vid_sub_root {
// If sub-roots are equal, then `for_vid` and
// `vid` are related via subtyping.
Err(TypeError::CyclicTy(self.root_ty))
} else {
let probe = self.infcx.inner.borrow_mut().type_variables().probe(vid);
match probe {
TypeVariableValue::Known { value: u } => {
debug!("generalize: known value {:?}", u);
self.relate(u, u)
}
TypeVariableValue::Unknown { universe } => {
match self.ambient_variance {
// Invariant: no need to make a fresh type variable.
ty::Invariant => {
if self.for_universe.can_name(universe) {
return Ok(t);
}
}
// Bivariant: make a fresh var, but we
// may need a WF predicate. See
// comment on `needs_wf` field for
// more info.
ty::Bivariant => self.needs_wf = true,
// Co/contravariant: this will be
// sufficiently constrained later on.
ty::Covariant | ty::Contravariant => (),
}
let origin =
*self.infcx.inner.borrow_mut().type_variables().var_origin(vid);
let new_var_id = self
.infcx
.inner
.borrow_mut()
.type_variables()
.new_var(self.for_universe, origin);
let u = self.tcx().mk_ty_var(new_var_id);
// Record that we replaced `vid` with `new_var_id` as part of a generalization
// operation. This is needed to detect cyclic types. To see why, see the
// docs in the `type_variables` module.
self.infcx.inner.borrow_mut().type_variables().sub(vid, new_var_id);
debug!("generalize: replacing original vid={:?} with new={:?}", vid, u);
Ok(u)
}
}
}
}
ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => {
// No matter what mode we are in,
// integer/floating-point types must be equal to be
// relatable.
Ok(t)
}
ty::Alias(ty::Opaque, ty::AliasTy { def_id, substs, .. }) => {
let s = self.relate(substs, substs)?;
Ok(if s == substs { t } else { self.infcx.tcx.mk_opaque(def_id, s) })
}
_ => relate::super_relate_tys(self, t, t),
}?;
self.cache.insert(t, result);
Ok(result)
}
fn regions(
&mut self,
r: ty::Region<'tcx>,
r2: ty::Region<'tcx>,
) -> RelateResult<'tcx, ty::Region<'tcx>> {
assert_eq!(r, r2); // we are abusing TypeRelation here; both LHS and RHS ought to be ==
debug!("generalize: regions r={:?}", r);
match *r {
// Never make variables for regions bound within the type itself,
// nor for erased regions.
ty::ReLateBound(..) | ty::ReErased => {
return Ok(r);
}
ty::ReError(_) => {
return Ok(r);
}
ty::RePlaceholder(..)
| ty::ReVar(..)
| ty::ReStatic
| ty::ReEarlyBound(..)
| ty::ReFree(..) => {
// see common code below
}
}
// If we are in an invariant context, we can re-use the region
// as is, unless it happens to be in some universe that we
// can't name. (In the case of a region *variable*, we could
// use it if we promoted it into our universe, but we don't
// bother.)
if let ty::Invariant = self.ambient_variance {
let r_universe = self.infcx.universe_of_region(r);
if self.for_universe.can_name(r_universe) {
return Ok(r);
}
}
// FIXME: This is non-ideal because we don't give a
// very descriptive origin for this region variable.
Ok(self.infcx.next_region_var_in_universe(MiscVariable(self.cause.span), self.for_universe))
}
fn consts(
&mut self,
c: ty::Const<'tcx>,
c2: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>> {
assert_eq!(c, c2); // we are abusing TypeRelation here; both LHS and RHS ought to be ==
match c.kind() {
ty::ConstKind::Infer(InferConst::Var(vid)) => {
let mut inner = self.infcx.inner.borrow_mut();
let variable_table = &mut inner.const_unification_table();
let var_value = variable_table.probe_value(vid);
match var_value.val {
ConstVariableValue::Known { value: u } => {
drop(inner);
self.relate(u, u)
}
ConstVariableValue::Unknown { universe } => {
if self.for_universe.can_name(universe) {
Ok(c)
} else {
let new_var_id = variable_table.new_key(ConstVarValue {
origin: var_value.origin,
val: ConstVariableValue::Unknown { universe: self.for_universe },
});
Ok(self.tcx().mk_const(new_var_id, c.ty()))
}
}
}
}
ty::ConstKind::Unevaluated(ty::UnevaluatedConst { def, substs }) => {
let substs = self.relate_with_variance(
ty::Variance::Invariant,
ty::VarianceDiagInfo::default(),
substs,
substs,
)?;
Ok(self.tcx().mk_const(ty::UnevaluatedConst { def, substs }, c.ty()))
}
_ => relate::super_relate_consts(self, c, c),
}
}
}
pub trait ObligationEmittingRelation<'tcx>: TypeRelation<'tcx> {
/// Register obligations that must hold in order for this relation to hold
fn register_obligations(&mut self, obligations: PredicateObligations<'tcx>);
/// Register predicates that must hold in order for this relation to hold. Uses
/// a default obligation cause, [`ObligationEmittingRelation::register_obligations`] should
/// be used if control over the obligaton causes is required.
fn register_predicates(&mut self, obligations: impl IntoIterator<Item: ToPredicate<'tcx>>);
/// Register an obligation that both constants must be equal to each other.
///
/// If they aren't equal then the relation doesn't hold.
fn register_const_equate_obligation(&mut self, a: ty::Const<'tcx>, b: ty::Const<'tcx>) {
let (a, b) = if self.a_is_expected() { (a, b) } else { (b, a) };
self.register_predicates([ty::Binder::dummy(if self.tcx().trait_solver_next() {
ty::PredicateKind::AliasRelate(a.into(), b.into(), ty::AliasRelationDirection::Equate)
} else {
ty::PredicateKind::ConstEquate(a, b)
})]);
}
/// Register an obligation that both types must be related to each other according to
/// the [`ty::AliasRelationDirection`] given by [`ObligationEmittingRelation::alias_relate_direction`]
fn register_type_relate_obligation(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) {
self.register_predicates([ty::Binder::dummy(ty::PredicateKind::AliasRelate(
a.into(),
b.into(),
self.alias_relate_direction(),
))]);
}
/// Relation direction emitted for `AliasRelate` predicates, corresponding to the direction
/// of the relation.
fn alias_relate_direction(&self) -> ty::AliasRelationDirection;
}
fn int_unification_error<'tcx>(
a_is_expected: bool,
v: (ty::IntVarValue, ty::IntVarValue),
) -> TypeError<'tcx> {
let (a, b) = v;
TypeError::IntMismatch(ExpectedFound::new(a_is_expected, a, b))
}
fn float_unification_error<'tcx>(
a_is_expected: bool,
v: (ty::FloatVarValue, ty::FloatVarValue),
) -> TypeError<'tcx> {
let (ty::FloatVarValue(a), ty::FloatVarValue(b)) = v;
TypeError::FloatMismatch(ExpectedFound::new(a_is_expected, a, b))
}
struct ConstInferUnifier<'cx, 'tcx> {
infcx: &'cx InferCtxt<'tcx>,
span: Span,
for_universe: ty::UniverseIndex,
/// The vid of the const variable that is in the process of being
/// instantiated; if we find this within the const we are folding,
/// that means we would have created a cyclic const.
target_vid: ty::ConstVid<'tcx>,
}
impl<'tcx> FallibleTypeFolder<TyCtxt<'tcx>> for ConstInferUnifier<'_, 'tcx> {
type Error = TypeError<'tcx>;
fn interner(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
#[instrument(level = "debug", skip(self), ret)]
fn try_fold_ty(&mut self, t: Ty<'tcx>) -> Result<Ty<'tcx>, TypeError<'tcx>> {
match t.kind() {
&ty::Infer(ty::TyVar(vid)) => {
let vid = self.infcx.inner.borrow_mut().type_variables().root_var(vid);
let probe = self.infcx.inner.borrow_mut().type_variables().probe(vid);
match probe {
TypeVariableValue::Known { value: u } => {
debug!("ConstOccursChecker: known value {:?}", u);
u.try_fold_with(self)
}
TypeVariableValue::Unknown { universe } => {
if self.for_universe.can_name(universe) {
return Ok(t);
}
let origin =
*self.infcx.inner.borrow_mut().type_variables().var_origin(vid);
let new_var_id = self
.infcx
.inner
.borrow_mut()
.type_variables()
.new_var(self.for_universe, origin);
Ok(self.interner().mk_ty_var(new_var_id))
}
}
}
ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => Ok(t),
_ => t.try_super_fold_with(self),
}
}
#[instrument(level = "debug", skip(self), ret)]
fn try_fold_region(
&mut self,
r: ty::Region<'tcx>,
) -> Result<ty::Region<'tcx>, TypeError<'tcx>> {
debug!("ConstInferUnifier: r={:?}", r);
match *r {
// Never make variables for regions bound within the type itself,
// nor for erased regions.
ty::ReLateBound(..) | ty::ReErased | ty::ReError(_) => {
return Ok(r);
}
ty::RePlaceholder(..)
| ty::ReVar(..)
| ty::ReStatic
| ty::ReEarlyBound(..)
| ty::ReFree(..) => {
// see common code below
}
}
let r_universe = self.infcx.universe_of_region(r);
if self.for_universe.can_name(r_universe) {
return Ok(r);
} else {
// FIXME: This is non-ideal because we don't give a
// very descriptive origin for this region variable.
Ok(self.infcx.next_region_var_in_universe(MiscVariable(self.span), self.for_universe))
}
}
#[instrument(level = "debug", skip(self), ret)]
fn try_fold_const(&mut self, c: ty::Const<'tcx>) -> Result<ty::Const<'tcx>, TypeError<'tcx>> {
match c.kind() {
ty::ConstKind::Infer(InferConst::Var(vid)) => {
// Check if the current unification would end up
// unifying `target_vid` with a const which contains
// an inference variable which is unioned with `target_vid`.
//
// Not doing so can easily result in stack overflows.
if self
.infcx
.inner
.borrow_mut()
.const_unification_table()
.unioned(self.target_vid, vid)
{
return Err(TypeError::CyclicConst(c));
}
let var_value =
self.infcx.inner.borrow_mut().const_unification_table().probe_value(vid);
match var_value.val {
ConstVariableValue::Known { value: u } => u.try_fold_with(self),
ConstVariableValue::Unknown { universe } => {
if self.for_universe.can_name(universe) {
Ok(c)
} else {
let new_var_id =
self.infcx.inner.borrow_mut().const_unification_table().new_key(
ConstVarValue {
origin: var_value.origin,
val: ConstVariableValue::Unknown {
universe: self.for_universe,
},
},
);
Ok(self.interner().mk_const(new_var_id, c.ty()))
}
}
}
}
_ => c.try_super_fold_with(self),
}
}
}
|