1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
|
use crate::mir::interpret::ErrorHandled;
use crate::ty;
use crate::ty::util::{Discr, IntTypeExt};
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::intern::Interned;
use rustc_data_structures::stable_hasher::HashingControls;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_index::vec::{Idx, IndexVec};
use rustc_query_system::ich::StableHashingContext;
use rustc_session::DataTypeKind;
use rustc_span::symbol::sym;
use rustc_target::abi::{ReprOptions, VariantIdx};
use std::cell::RefCell;
use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::ops::Range;
use std::str;
use super::{Destructor, FieldDef, GenericPredicates, Ty, TyCtxt, VariantDef, VariantDiscr};
bitflags! {
#[derive(HashStable, TyEncodable, TyDecodable)]
pub struct AdtFlags: u32 {
const NO_ADT_FLAGS = 0;
/// Indicates whether the ADT is an enum.
const IS_ENUM = 1 << 0;
/// Indicates whether the ADT is a union.
const IS_UNION = 1 << 1;
/// Indicates whether the ADT is a struct.
const IS_STRUCT = 1 << 2;
/// Indicates whether the ADT is a struct and has a constructor.
const HAS_CTOR = 1 << 3;
/// Indicates whether the type is `PhantomData`.
const IS_PHANTOM_DATA = 1 << 4;
/// Indicates whether the type has a `#[fundamental]` attribute.
const IS_FUNDAMENTAL = 1 << 5;
/// Indicates whether the type is `Box`.
const IS_BOX = 1 << 6;
/// Indicates whether the type is `ManuallyDrop`.
const IS_MANUALLY_DROP = 1 << 7;
/// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
/// (i.e., this flag is never set unless this ADT is an enum).
const IS_VARIANT_LIST_NON_EXHAUSTIVE = 1 << 8;
/// Indicates whether the type is `UnsafeCell`.
const IS_UNSAFE_CELL = 1 << 9;
}
}
/// The definition of a user-defined type, e.g., a `struct`, `enum`, or `union`.
///
/// These are all interned (by `mk_adt_def`) into the global arena.
///
/// The initialism *ADT* stands for an [*algebraic data type (ADT)*][adt].
/// This is slightly wrong because `union`s are not ADTs.
/// Moreover, Rust only allows recursive data types through indirection.
///
/// [adt]: https://en.wikipedia.org/wiki/Algebraic_data_type
///
/// # Recursive types
///
/// It may seem impossible to represent recursive types using [`Ty`],
/// since [`TyKind::Adt`] includes [`AdtDef`], which includes its fields,
/// creating a cycle. However, `AdtDef` does not actually include the *types*
/// of its fields; it includes just their [`DefId`]s.
///
/// [`TyKind::Adt`]: ty::TyKind::Adt
///
/// For example, the following type:
///
/// ```
/// struct S { x: Box<S> }
/// ```
///
/// is essentially represented with [`Ty`] as the following pseudocode:
///
/// ```ignore (illustrative)
/// struct S { x }
/// ```
///
/// where `x` here represents the `DefId` of `S.x`. Then, the `DefId`
/// can be used with [`TyCtxt::type_of()`] to get the type of the field.
#[derive(TyEncodable, TyDecodable)]
pub struct AdtDefData {
/// The `DefId` of the struct, enum or union item.
pub did: DefId,
/// Variants of the ADT. If this is a struct or union, then there will be a single variant.
variants: IndexVec<VariantIdx, VariantDef>,
/// Flags of the ADT (e.g., is this a struct? is this non-exhaustive?).
flags: AdtFlags,
/// Repr options provided by the user.
repr: ReprOptions,
}
impl PartialOrd for AdtDefData {
fn partial_cmp(&self, other: &AdtDefData) -> Option<Ordering> {
Some(self.cmp(&other))
}
}
/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Ord` only based on `did`.
impl Ord for AdtDefData {
fn cmp(&self, other: &AdtDefData) -> Ordering {
self.did.cmp(&other.did)
}
}
/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `PartialEq` only based on `did`.
impl PartialEq for AdtDefData {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.did == other.did
}
}
impl Eq for AdtDefData {}
/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Hash` only based on `did`.
impl Hash for AdtDefData {
#[inline]
fn hash<H: Hasher>(&self, s: &mut H) {
self.did.hash(s)
}
}
impl<'a> HashStable<StableHashingContext<'a>> for AdtDefData {
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
thread_local! {
static CACHE: RefCell<FxHashMap<(usize, HashingControls), Fingerprint>> = Default::default();
}
let hash: Fingerprint = CACHE.with(|cache| {
let addr = self as *const AdtDefData as usize;
let hashing_controls = hcx.hashing_controls();
*cache.borrow_mut().entry((addr, hashing_controls)).or_insert_with(|| {
let ty::AdtDefData { did, ref variants, ref flags, ref repr } = *self;
let mut hasher = StableHasher::new();
did.hash_stable(hcx, &mut hasher);
variants.hash_stable(hcx, &mut hasher);
flags.hash_stable(hcx, &mut hasher);
repr.hash_stable(hcx, &mut hasher);
hasher.finish()
})
});
hash.hash_stable(hcx, hasher);
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
#[rustc_pass_by_value]
pub struct AdtDef<'tcx>(pub Interned<'tcx, AdtDefData>);
impl<'tcx> AdtDef<'tcx> {
#[inline]
pub fn did(self) -> DefId {
self.0.0.did
}
#[inline]
pub fn variants(self) -> &'tcx IndexVec<VariantIdx, VariantDef> {
&self.0.0.variants
}
#[inline]
pub fn variant(self, idx: VariantIdx) -> &'tcx VariantDef {
&self.0.0.variants[idx]
}
#[inline]
pub fn flags(self) -> AdtFlags {
self.0.0.flags
}
#[inline]
pub fn repr(self) -> ReprOptions {
self.0.0.repr
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, HashStable, TyEncodable, TyDecodable)]
pub enum AdtKind {
Struct,
Union,
Enum,
}
impl Into<DataTypeKind> for AdtKind {
fn into(self) -> DataTypeKind {
match self {
AdtKind::Struct => DataTypeKind::Struct,
AdtKind::Union => DataTypeKind::Union,
AdtKind::Enum => DataTypeKind::Enum,
}
}
}
impl AdtDefData {
/// Creates a new `AdtDefData`.
pub(super) fn new(
tcx: TyCtxt<'_>,
did: DefId,
kind: AdtKind,
variants: IndexVec<VariantIdx, VariantDef>,
repr: ReprOptions,
) -> Self {
debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
let mut flags = AdtFlags::NO_ADT_FLAGS;
if kind == AdtKind::Enum && tcx.has_attr(did, sym::non_exhaustive) {
debug!("found non-exhaustive variant list for {:?}", did);
flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
}
flags |= match kind {
AdtKind::Enum => AdtFlags::IS_ENUM,
AdtKind::Union => AdtFlags::IS_UNION,
AdtKind::Struct => AdtFlags::IS_STRUCT,
};
if kind == AdtKind::Struct && variants[VariantIdx::new(0)].ctor.is_some() {
flags |= AdtFlags::HAS_CTOR;
}
if tcx.has_attr(did, sym::fundamental) {
flags |= AdtFlags::IS_FUNDAMENTAL;
}
if Some(did) == tcx.lang_items().phantom_data() {
flags |= AdtFlags::IS_PHANTOM_DATA;
}
if Some(did) == tcx.lang_items().owned_box() {
flags |= AdtFlags::IS_BOX;
}
if Some(did) == tcx.lang_items().manually_drop() {
flags |= AdtFlags::IS_MANUALLY_DROP;
}
if Some(did) == tcx.lang_items().unsafe_cell_type() {
flags |= AdtFlags::IS_UNSAFE_CELL;
}
AdtDefData { did, variants, flags, repr }
}
}
impl<'tcx> AdtDef<'tcx> {
/// Returns `true` if this is a struct.
#[inline]
pub fn is_struct(self) -> bool {
self.flags().contains(AdtFlags::IS_STRUCT)
}
/// Returns `true` if this is a union.
#[inline]
pub fn is_union(self) -> bool {
self.flags().contains(AdtFlags::IS_UNION)
}
/// Returns `true` if this is an enum.
#[inline]
pub fn is_enum(self) -> bool {
self.flags().contains(AdtFlags::IS_ENUM)
}
/// Returns `true` if the variant list of this ADT is `#[non_exhaustive]`.
#[inline]
pub fn is_variant_list_non_exhaustive(self) -> bool {
self.flags().contains(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
}
/// Returns the kind of the ADT.
#[inline]
pub fn adt_kind(self) -> AdtKind {
if self.is_enum() {
AdtKind::Enum
} else if self.is_union() {
AdtKind::Union
} else {
AdtKind::Struct
}
}
/// Returns a description of this abstract data type.
pub fn descr(self) -> &'static str {
match self.adt_kind() {
AdtKind::Struct => "struct",
AdtKind::Union => "union",
AdtKind::Enum => "enum",
}
}
/// Returns a description of a variant of this abstract data type.
#[inline]
pub fn variant_descr(self) -> &'static str {
match self.adt_kind() {
AdtKind::Struct => "struct",
AdtKind::Union => "union",
AdtKind::Enum => "variant",
}
}
/// If this function returns `true`, it implies that `is_struct` must return `true`.
#[inline]
pub fn has_ctor(self) -> bool {
self.flags().contains(AdtFlags::HAS_CTOR)
}
/// Returns `true` if this type is `#[fundamental]` for the purposes
/// of coherence checking.
#[inline]
pub fn is_fundamental(self) -> bool {
self.flags().contains(AdtFlags::IS_FUNDAMENTAL)
}
/// Returns `true` if this is `PhantomData<T>`.
#[inline]
pub fn is_phantom_data(self) -> bool {
self.flags().contains(AdtFlags::IS_PHANTOM_DATA)
}
/// Returns `true` if this is `Box<T>`.
#[inline]
pub fn is_box(self) -> bool {
self.flags().contains(AdtFlags::IS_BOX)
}
/// Returns `true` if this is `UnsafeCell<T>`.
#[inline]
pub fn is_unsafe_cell(self) -> bool {
self.flags().contains(AdtFlags::IS_UNSAFE_CELL)
}
/// Returns `true` if this is `ManuallyDrop<T>`.
#[inline]
pub fn is_manually_drop(self) -> bool {
self.flags().contains(AdtFlags::IS_MANUALLY_DROP)
}
/// Returns `true` if this type has a destructor.
pub fn has_dtor(self, tcx: TyCtxt<'tcx>) -> bool {
self.destructor(tcx).is_some()
}
pub fn has_non_const_dtor(self, tcx: TyCtxt<'tcx>) -> bool {
matches!(self.destructor(tcx), Some(Destructor { constness: hir::Constness::NotConst, .. }))
}
/// Asserts this is a struct or union and returns its unique variant.
pub fn non_enum_variant(self) -> &'tcx VariantDef {
assert!(self.is_struct() || self.is_union());
&self.variant(VariantIdx::new(0))
}
#[inline]
pub fn predicates(self, tcx: TyCtxt<'tcx>) -> GenericPredicates<'tcx> {
tcx.predicates_of(self.did())
}
/// Returns an iterator over all fields contained
/// by this ADT.
#[inline]
pub fn all_fields(self) -> impl Iterator<Item = &'tcx FieldDef> + Clone {
self.variants().iter().flat_map(|v| v.fields.iter())
}
/// Whether the ADT lacks fields. Note that this includes uninhabited enums,
/// e.g., `enum Void {}` is considered payload free as well.
pub fn is_payloadfree(self) -> bool {
// Treat the ADT as not payload-free if arbitrary_enum_discriminant is used (#88621).
// This would disallow the following kind of enum from being casted into integer.
// ```
// enum Enum {
// Foo() = 1,
// Bar{} = 2,
// Baz = 3,
// }
// ```
if self.variants().iter().any(|v| {
matches!(v.discr, VariantDiscr::Explicit(_)) && v.ctor_kind() != Some(CtorKind::Const)
}) {
return false;
}
self.variants().iter().all(|v| v.fields.is_empty())
}
/// Return a `VariantDef` given a variant id.
pub fn variant_with_id(self, vid: DefId) -> &'tcx VariantDef {
self.variants().iter().find(|v| v.def_id == vid).expect("variant_with_id: unknown variant")
}
/// Return a `VariantDef` given a constructor id.
pub fn variant_with_ctor_id(self, cid: DefId) -> &'tcx VariantDef {
self.variants()
.iter()
.find(|v| v.ctor_def_id() == Some(cid))
.expect("variant_with_ctor_id: unknown variant")
}
/// Return the index of `VariantDef` given a variant id.
#[inline]
pub fn variant_index_with_id(self, vid: DefId) -> VariantIdx {
self.variants()
.iter_enumerated()
.find(|(_, v)| v.def_id == vid)
.expect("variant_index_with_id: unknown variant")
.0
}
/// Return the index of `VariantDef` given a constructor id.
pub fn variant_index_with_ctor_id(self, cid: DefId) -> VariantIdx {
self.variants()
.iter_enumerated()
.find(|(_, v)| v.ctor_def_id() == Some(cid))
.expect("variant_index_with_ctor_id: unknown variant")
.0
}
pub fn variant_of_res(self, res: Res) -> &'tcx VariantDef {
match res {
Res::Def(DefKind::Variant, vid) => self.variant_with_id(vid),
Res::Def(DefKind::Ctor(..), cid) => self.variant_with_ctor_id(cid),
Res::Def(DefKind::Struct, _)
| Res::Def(DefKind::Union, _)
| Res::Def(DefKind::TyAlias, _)
| Res::Def(DefKind::AssocTy, _)
| Res::SelfTyParam { .. }
| Res::SelfTyAlias { .. }
| Res::SelfCtor(..) => self.non_enum_variant(),
_ => bug!("unexpected res {:?} in variant_of_res", res),
}
}
#[inline]
pub fn eval_explicit_discr(self, tcx: TyCtxt<'tcx>, expr_did: DefId) -> Option<Discr<'tcx>> {
assert!(self.is_enum());
let param_env = tcx.param_env(expr_did);
let repr_type = self.repr().discr_type();
match tcx.const_eval_poly(expr_did) {
Ok(val) => {
let ty = repr_type.to_ty(tcx);
if let Some(b) = val.try_to_bits_for_ty(tcx, param_env, ty) {
trace!("discriminants: {} ({:?})", b, repr_type);
Some(Discr { val: b, ty })
} else {
info!("invalid enum discriminant: {:#?}", val);
tcx.sess.emit_err(crate::error::ConstEvalNonIntError {
span: tcx.def_span(expr_did),
});
None
}
}
Err(err) => {
let msg = match err {
ErrorHandled::Reported(_) => "enum discriminant evaluation failed",
ErrorHandled::TooGeneric => "enum discriminant depends on generics",
};
tcx.sess.delay_span_bug(tcx.def_span(expr_did), msg);
None
}
}
}
#[inline]
pub fn discriminants(
self,
tcx: TyCtxt<'tcx>,
) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx> {
assert!(self.is_enum());
let repr_type = self.repr().discr_type();
let initial = repr_type.initial_discriminant(tcx);
let mut prev_discr = None::<Discr<'tcx>>;
self.variants().iter_enumerated().map(move |(i, v)| {
let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
if let VariantDiscr::Explicit(expr_did) = v.discr {
if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
discr = new_discr;
}
}
prev_discr = Some(discr);
(i, discr)
})
}
#[inline]
pub fn variant_range(self) -> Range<VariantIdx> {
VariantIdx::new(0)..VariantIdx::new(self.variants().len())
}
/// Computes the discriminant value used by a specific variant.
/// Unlike `discriminants`, this is (amortized) constant-time,
/// only doing at most one query for evaluating an explicit
/// discriminant (the last one before the requested variant),
/// assuming there are no constant-evaluation errors there.
#[inline]
pub fn discriminant_for_variant(
self,
tcx: TyCtxt<'tcx>,
variant_index: VariantIdx,
) -> Discr<'tcx> {
assert!(self.is_enum());
let (val, offset) = self.discriminant_def_for_variant(variant_index);
let explicit_value = val
.and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
.unwrap_or_else(|| self.repr().discr_type().initial_discriminant(tcx));
explicit_value.checked_add(tcx, offset as u128).0
}
/// Yields a `DefId` for the discriminant and an offset to add to it
/// Alternatively, if there is no explicit discriminant, returns the
/// inferred discriminant directly.
pub fn discriminant_def_for_variant(self, variant_index: VariantIdx) -> (Option<DefId>, u32) {
assert!(!self.variants().is_empty());
let mut explicit_index = variant_index.as_u32();
let expr_did;
loop {
match self.variant(VariantIdx::from_u32(explicit_index)).discr {
ty::VariantDiscr::Relative(0) => {
expr_did = None;
break;
}
ty::VariantDiscr::Relative(distance) => {
explicit_index -= distance;
}
ty::VariantDiscr::Explicit(did) => {
expr_did = Some(did);
break;
}
}
}
(expr_did, variant_index.as_u32() - explicit_index)
}
pub fn destructor(self, tcx: TyCtxt<'tcx>) -> Option<Destructor> {
tcx.adt_destructor(self.did())
}
/// Returns a list of types such that `Self: Sized` if and only
/// if that type is `Sized`, or `TyErr` if this type is recursive.
///
/// Oddly enough, checking that the sized-constraint is `Sized` is
/// actually more expressive than checking all members:
/// the `Sized` trait is inductive, so an associated type that references
/// `Self` would prevent its containing ADT from being `Sized`.
///
/// Due to normalization being eager, this applies even if
/// the associated type is behind a pointer (e.g., issue #31299).
pub fn sized_constraint(self, tcx: TyCtxt<'tcx>) -> ty::EarlyBinder<&'tcx [Ty<'tcx>]> {
ty::EarlyBinder(tcx.adt_sized_constraint(self.did()))
}
}
#[derive(Clone, Copy, Debug)]
#[derive(HashStable)]
pub enum Representability {
Representable,
Infinite,
}
|