1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
use smallvec::SmallVec;
use crate::ty::context::TyCtxt;
use crate::ty::{self, DefId, ParamEnv, Ty};
/// Represents whether some type is inhabited in a given context.
/// Examples of uninhabited types are `!`, `enum Void {}`, or a struct
/// containing either of those types.
/// A type's inhabitedness may depend on the `ParamEnv` as well as what types
/// are visible in the current module.
#[derive(Clone, Copy, Debug, PartialEq, HashStable)]
pub enum InhabitedPredicate<'tcx> {
/// Inhabited
True,
/// Uninhabited
False,
/// Uninhabited when a const value is non-zero. This occurs when there is an
/// array of uninhabited items, but the array is inhabited if it is empty.
ConstIsZero(ty::Const<'tcx>),
/// Uninhabited if within a certain module. This occurs when an uninhabited
/// type has restricted visibility.
NotInModule(DefId),
/// Inhabited if some generic type is inhabited.
/// These are replaced by calling [`Self::instantiate`].
GenericType(Ty<'tcx>),
/// A AND B
And(&'tcx [InhabitedPredicate<'tcx>; 2]),
/// A OR B
Or(&'tcx [InhabitedPredicate<'tcx>; 2]),
}
impl<'tcx> InhabitedPredicate<'tcx> {
/// Returns true if the corresponding type is inhabited in the given
/// `ParamEnv` and module
pub fn apply(self, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, module_def_id: DefId) -> bool {
let Ok(result) = self.apply_inner::<!>(tcx, param_env, &mut Default::default(), &|id| {
Ok(tcx.is_descendant_of(module_def_id, id))
});
result
}
/// Same as `apply`, but returns `None` if self contains a module predicate
pub fn apply_any_module(self, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>) -> Option<bool> {
self.apply_inner(tcx, param_env, &mut Default::default(), &|_| Err(())).ok()
}
/// Same as `apply`, but `NotInModule(_)` predicates yield `false`. That is,
/// privately uninhabited types are considered always uninhabited.
pub fn apply_ignore_module(self, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>) -> bool {
let Ok(result) =
self.apply_inner::<!>(tcx, param_env, &mut Default::default(), &|_| Ok(true));
result
}
#[instrument(level = "debug", skip(tcx, param_env, in_module), ret)]
fn apply_inner<E: std::fmt::Debug>(
self,
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
eval_stack: &mut SmallVec<[Ty<'tcx>; 1]>, // for cycle detection
in_module: &impl Fn(DefId) -> Result<bool, E>,
) -> Result<bool, E> {
match self {
Self::False => Ok(false),
Self::True => Ok(true),
Self::ConstIsZero(const_) => match const_.try_eval_target_usize(tcx, param_env) {
None | Some(0) => Ok(true),
Some(1..) => Ok(false),
},
Self::NotInModule(id) => in_module(id).map(|in_mod| !in_mod),
// `t` may be a projection, for which `inhabited_predicate` returns a `GenericType`. As
// we have a param_env available, we can do better.
Self::GenericType(t) => {
let normalized_pred = tcx
.try_normalize_erasing_regions(param_env, t)
.map_or(self, |t| t.inhabited_predicate(tcx));
match normalized_pred {
// We don't have more information than we started with, so consider inhabited.
Self::GenericType(_) => Ok(true),
pred => {
// A type which is cyclic when monomorphized can happen here since the
// layout error would only trigger later. See e.g. `tests/ui/sized/recursive-type-2.rs`.
if eval_stack.contains(&t) {
return Ok(true); // Recover; this will error later.
}
eval_stack.push(t);
let ret = pred.apply_inner(tcx, param_env, eval_stack, in_module);
eval_stack.pop();
ret
}
}
}
Self::And([a, b]) => {
try_and(a, b, |x| x.apply_inner(tcx, param_env, eval_stack, in_module))
}
Self::Or([a, b]) => {
try_or(a, b, |x| x.apply_inner(tcx, param_env, eval_stack, in_module))
}
}
}
pub fn and(self, tcx: TyCtxt<'tcx>, other: Self) -> Self {
self.reduce_and(tcx, other).unwrap_or_else(|| Self::And(tcx.arena.alloc([self, other])))
}
pub fn or(self, tcx: TyCtxt<'tcx>, other: Self) -> Self {
self.reduce_or(tcx, other).unwrap_or_else(|| Self::Or(tcx.arena.alloc([self, other])))
}
pub fn all(tcx: TyCtxt<'tcx>, iter: impl IntoIterator<Item = Self>) -> Self {
let mut result = Self::True;
for pred in iter {
if matches!(pred, Self::False) {
return Self::False;
}
result = result.and(tcx, pred);
}
result
}
pub fn any(tcx: TyCtxt<'tcx>, iter: impl IntoIterator<Item = Self>) -> Self {
let mut result = Self::False;
for pred in iter {
if matches!(pred, Self::True) {
return Self::True;
}
result = result.or(tcx, pred);
}
result
}
fn reduce_and(self, tcx: TyCtxt<'tcx>, other: Self) -> Option<Self> {
match (self, other) {
(Self::True, a) | (a, Self::True) => Some(a),
(Self::False, _) | (_, Self::False) => Some(Self::False),
(Self::ConstIsZero(a), Self::ConstIsZero(b)) if a == b => Some(Self::ConstIsZero(a)),
(Self::NotInModule(a), Self::NotInModule(b)) if a == b => Some(Self::NotInModule(a)),
(Self::NotInModule(a), Self::NotInModule(b)) if tcx.is_descendant_of(a, b) => {
Some(Self::NotInModule(b))
}
(Self::NotInModule(a), Self::NotInModule(b)) if tcx.is_descendant_of(b, a) => {
Some(Self::NotInModule(a))
}
(Self::GenericType(a), Self::GenericType(b)) if a == b => Some(Self::GenericType(a)),
(Self::And(&[a, b]), c) | (c, Self::And(&[a, b])) => {
if let Some(ac) = a.reduce_and(tcx, c) {
Some(ac.and(tcx, b))
} else if let Some(bc) = b.reduce_and(tcx, c) {
Some(Self::And(tcx.arena.alloc([a, bc])))
} else {
None
}
}
_ => None,
}
}
fn reduce_or(self, tcx: TyCtxt<'tcx>, other: Self) -> Option<Self> {
match (self, other) {
(Self::True, _) | (_, Self::True) => Some(Self::True),
(Self::False, a) | (a, Self::False) => Some(a),
(Self::ConstIsZero(a), Self::ConstIsZero(b)) if a == b => Some(Self::ConstIsZero(a)),
(Self::NotInModule(a), Self::NotInModule(b)) if a == b => Some(Self::NotInModule(a)),
(Self::NotInModule(a), Self::NotInModule(b)) if tcx.is_descendant_of(a, b) => {
Some(Self::NotInModule(a))
}
(Self::NotInModule(a), Self::NotInModule(b)) if tcx.is_descendant_of(b, a) => {
Some(Self::NotInModule(b))
}
(Self::GenericType(a), Self::GenericType(b)) if a == b => Some(Self::GenericType(a)),
(Self::Or(&[a, b]), c) | (c, Self::Or(&[a, b])) => {
if let Some(ac) = a.reduce_or(tcx, c) {
Some(ac.or(tcx, b))
} else if let Some(bc) = b.reduce_or(tcx, c) {
Some(Self::Or(tcx.arena.alloc([a, bc])))
} else {
None
}
}
_ => None,
}
}
/// Replaces generic types with its corresponding predicate
pub fn instantiate(self, tcx: TyCtxt<'tcx>, args: ty::GenericArgsRef<'tcx>) -> Self {
self.instantiate_opt(tcx, args).unwrap_or(self)
}
fn instantiate_opt(self, tcx: TyCtxt<'tcx>, args: ty::GenericArgsRef<'tcx>) -> Option<Self> {
match self {
Self::ConstIsZero(c) => {
let c = ty::EarlyBinder::bind(c).instantiate(tcx, args);
let pred = match c.try_to_target_usize(tcx) {
Some(0) => Self::True,
Some(1..) => Self::False,
None => Self::ConstIsZero(c),
};
Some(pred)
}
Self::GenericType(t) => {
Some(ty::EarlyBinder::bind(t).instantiate(tcx, args).inhabited_predicate(tcx))
}
Self::And(&[a, b]) => match a.instantiate_opt(tcx, args) {
None => b.instantiate_opt(tcx, args).map(|b| a.and(tcx, b)),
Some(InhabitedPredicate::False) => Some(InhabitedPredicate::False),
Some(a) => Some(a.and(tcx, b.instantiate_opt(tcx, args).unwrap_or(b))),
},
Self::Or(&[a, b]) => match a.instantiate_opt(tcx, args) {
None => b.instantiate_opt(tcx, args).map(|b| a.or(tcx, b)),
Some(InhabitedPredicate::True) => Some(InhabitedPredicate::True),
Some(a) => Some(a.or(tcx, b.instantiate_opt(tcx, args).unwrap_or(b))),
},
_ => None,
}
}
}
// this is basically like `f(a)? && f(b)?` but different in the case of
// `Ok(false) && Err(_) -> Ok(false)`
fn try_and<T, E>(a: T, b: T, mut f: impl FnMut(T) -> Result<bool, E>) -> Result<bool, E> {
let a = f(a);
if matches!(a, Ok(false)) {
return Ok(false);
}
match (a, f(b)) {
(_, Ok(false)) | (Ok(false), _) => Ok(false),
(Ok(true), Ok(true)) => Ok(true),
(Err(e), _) | (_, Err(e)) => Err(e),
}
}
fn try_or<T, E>(a: T, b: T, mut f: impl FnMut(T) -> Result<bool, E>) -> Result<bool, E> {
let a = f(a);
if matches!(a, Ok(true)) {
return Ok(true);
}
match (a, f(b)) {
(_, Ok(true)) | (Ok(true), _) => Ok(true),
(Ok(false), Ok(false)) => Ok(false),
(Err(e), _) | (_, Err(e)) => Err(e),
}
}
|