1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
|
use crate::build;
pub(crate) use crate::build::expr::as_constant::lit_to_mir_constant;
use crate::build::expr::as_place::PlaceBuilder;
use crate::build::scope::DropKind;
use crate::thir::pattern::pat_from_hir;
use rustc_apfloat::ieee::{Double, Single};
use rustc_apfloat::Float;
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::ErrorGuaranteed;
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::lang_items::LangItem;
use rustc_hir::{GeneratorKind, Node};
use rustc_index::vec::{Idx, IndexVec};
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_middle::hir::place::PlaceBase as HirPlaceBase;
use rustc_middle::middle::region;
use rustc_middle::mir::interpret::ConstValue;
use rustc_middle::mir::interpret::Scalar;
use rustc_middle::mir::*;
use rustc_middle::thir::{BindingMode, Expr, ExprId, LintLevel, LocalVarId, PatKind, Thir};
use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitable, TypeckResults};
use rustc_span::symbol::sym;
use rustc_span::Span;
use rustc_span::Symbol;
use rustc_target::spec::abi::Abi;
use super::lints;
pub(crate) fn mir_built<'tcx>(
tcx: TyCtxt<'tcx>,
def: ty::WithOptConstParam<LocalDefId>,
) -> &'tcx rustc_data_structures::steal::Steal<Body<'tcx>> {
if let Some(def) = def.try_upgrade(tcx) {
return tcx.mir_built(def);
}
let mut body = mir_build(tcx, def);
if def.const_param_did.is_some() {
assert!(matches!(body.source.instance, ty::InstanceDef::Item(_)));
body.source = MirSource::from_instance(ty::InstanceDef::Item(def.to_global()));
}
tcx.alloc_steal_mir(body)
}
/// Construct the MIR for a given `DefId`.
fn mir_build(tcx: TyCtxt<'_>, def: ty::WithOptConstParam<LocalDefId>) -> Body<'_> {
let id = tcx.hir().local_def_id_to_hir_id(def.did);
let body_owner_kind = tcx.hir().body_owner_kind(def.did);
let typeck_results = tcx.typeck_opt_const_arg(def);
// Ensure unsafeck and abstract const building is ran before we steal the THIR.
// We can't use `ensure()` for `thir_abstract_const` as it doesn't compute the query
// if inputs are green. This can cause ICEs when calling `thir_abstract_const` after
// THIR has been stolen if we haven't computed this query yet.
match def {
ty::WithOptConstParam { did, const_param_did: Some(const_param_did) } => {
tcx.ensure().thir_check_unsafety_for_const_arg((did, const_param_did));
drop(tcx.thir_abstract_const_of_const_arg((did, const_param_did)));
}
ty::WithOptConstParam { did, const_param_did: None } => {
tcx.ensure().thir_check_unsafety(did);
drop(tcx.thir_abstract_const(did));
}
}
// Figure out what primary body this item has.
let (body_id, return_ty_span, span_with_body) = match tcx.hir().get(id) {
Node::Expr(hir::Expr {
kind: hir::ExprKind::Closure(hir::Closure { fn_decl, body, .. }),
..
}) => (*body, fn_decl.output.span(), None),
Node::Item(hir::Item {
kind: hir::ItemKind::Fn(hir::FnSig { decl, .. }, _, body_id),
span,
..
})
| Node::ImplItem(hir::ImplItem {
kind: hir::ImplItemKind::Fn(hir::FnSig { decl, .. }, body_id),
span,
..
})
| Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Fn(hir::FnSig { decl, .. }, hir::TraitFn::Provided(body_id)),
span,
..
}) => {
// Use the `Span` of the `Item/ImplItem/TraitItem` as the body span,
// since the def span of a function does not include the body
(*body_id, decl.output.span(), Some(*span))
}
Node::Item(hir::Item {
kind: hir::ItemKind::Static(ty, _, body_id) | hir::ItemKind::Const(ty, body_id),
..
})
| Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Const(ty, body_id), .. })
| Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Const(ty, Some(body_id)),
..
}) => (*body_id, ty.span, None),
Node::AnonConst(hir::AnonConst { body, hir_id, .. }) => {
(*body, tcx.hir().span(*hir_id), None)
}
_ => span_bug!(tcx.hir().span(id), "can't build MIR for {:?}", def.did),
};
// If we don't have a specialized span for the body, just use the
// normal def span.
let span_with_body = span_with_body.unwrap_or_else(|| tcx.hir().span(id));
tcx.infer_ctxt().enter(|infcx| {
let body = if let Some(error_reported) = typeck_results.tainted_by_errors {
build::construct_error(&infcx, def, id, body_id, body_owner_kind, error_reported)
} else if body_owner_kind.is_fn_or_closure() {
// fetch the fully liberated fn signature (that is, all bound
// types/lifetimes replaced)
let fn_sig = typeck_results.liberated_fn_sigs()[id];
let fn_def_id = tcx.hir().local_def_id(id);
let safety = match fn_sig.unsafety {
hir::Unsafety::Normal => Safety::Safe,
hir::Unsafety::Unsafe => Safety::FnUnsafe,
};
let body = tcx.hir().body(body_id);
let (thir, expr) = tcx
.thir_body(def)
.unwrap_or_else(|_| (tcx.alloc_steal_thir(Thir::new()), ExprId::from_u32(0)));
// We ran all queries that depended on THIR at the beginning
// of `mir_build`, so now we can steal it
let thir = thir.steal();
let ty = tcx.type_of(fn_def_id);
let mut abi = fn_sig.abi;
let implicit_argument = match ty.kind() {
ty::Closure(..) => {
// HACK(eddyb) Avoid having RustCall on closures,
// as it adds unnecessary (and wrong) auto-tupling.
abi = Abi::Rust;
vec![ArgInfo(liberated_closure_env_ty(tcx, id, body_id), None, None, None)]
}
ty::Generator(..) => {
let gen_ty = tcx.typeck_body(body_id).node_type(id);
// The resume argument may be missing, in that case we need to provide it here.
// It will always be `()` in this case.
if body.params.is_empty() {
vec![
ArgInfo(gen_ty, None, None, None),
ArgInfo(tcx.mk_unit(), None, None, None),
]
} else {
vec![ArgInfo(gen_ty, None, None, None)]
}
}
_ => vec![],
};
let explicit_arguments = body.params.iter().enumerate().map(|(index, arg)| {
let owner_id = tcx.hir().body_owner(body_id);
let opt_ty_info;
let self_arg;
if let Some(ref fn_decl) = tcx.hir().fn_decl_by_hir_id(owner_id) {
opt_ty_info = fn_decl
.inputs
.get(index)
// Make sure that inferred closure args have no type span
.and_then(|ty| if arg.pat.span != ty.span { Some(ty.span) } else { None });
self_arg = if index == 0 && fn_decl.implicit_self.has_implicit_self() {
match fn_decl.implicit_self {
hir::ImplicitSelfKind::Imm => Some(ImplicitSelfKind::Imm),
hir::ImplicitSelfKind::Mut => Some(ImplicitSelfKind::Mut),
hir::ImplicitSelfKind::ImmRef => Some(ImplicitSelfKind::ImmRef),
hir::ImplicitSelfKind::MutRef => Some(ImplicitSelfKind::MutRef),
_ => None,
}
} else {
None
};
} else {
opt_ty_info = None;
self_arg = None;
}
// C-variadic fns also have a `VaList` input that's not listed in `fn_sig`
// (as it's created inside the body itself, not passed in from outside).
let ty = if fn_sig.c_variadic && index == fn_sig.inputs().len() {
let va_list_did = tcx.require_lang_item(LangItem::VaList, Some(arg.span));
tcx.bound_type_of(va_list_did).subst(tcx, &[tcx.lifetimes.re_erased.into()])
} else {
fn_sig.inputs()[index]
};
ArgInfo(ty, opt_ty_info, Some(&arg), self_arg)
});
let arguments = implicit_argument.into_iter().chain(explicit_arguments);
let (yield_ty, return_ty) = if body.generator_kind.is_some() {
let gen_ty = tcx.typeck_body(body_id).node_type(id);
let gen_sig = match gen_ty.kind() {
ty::Generator(_, gen_substs, ..) => gen_substs.as_generator().sig(),
_ => span_bug!(tcx.hir().span(id), "generator w/o generator type: {:?}", ty),
};
(Some(gen_sig.yield_ty), gen_sig.return_ty)
} else {
(None, fn_sig.output())
};
let mut mir = build::construct_fn(
&thir,
&infcx,
def,
id,
arguments,
safety,
abi,
return_ty,
return_ty_span,
body,
expr,
span_with_body,
);
if yield_ty.is_some() {
mir.generator.as_mut().unwrap().yield_ty = yield_ty;
}
mir
} else {
// Get the revealed type of this const. This is *not* the adjusted
// type of its body, which may be a subtype of this type. For
// example:
//
// fn foo(_: &()) {}
// static X: fn(&'static ()) = foo;
//
// The adjusted type of the body of X is `for<'a> fn(&'a ())` which
// is not the same as the type of X. We need the type of the return
// place to be the type of the constant because NLL typeck will
// equate them.
let return_ty = typeck_results.node_type(id);
let (thir, expr) = tcx
.thir_body(def)
.unwrap_or_else(|_| (tcx.alloc_steal_thir(Thir::new()), ExprId::from_u32(0)));
// We ran all queries that depended on THIR at the beginning
// of `mir_build`, so now we can steal it
let thir = thir.steal();
build::construct_const(&thir, &infcx, expr, def, id, return_ty, return_ty_span)
};
lints::check(tcx, &body);
// The borrow checker will replace all the regions here with its own
// inference variables. There's no point having non-erased regions here.
// The exception is `body.user_type_annotations`, which is used unmodified
// by borrow checking.
debug_assert!(
!(body.local_decls.has_free_regions()
|| body.basic_blocks().has_free_regions()
|| body.var_debug_info.has_free_regions()
|| body.yield_ty().has_free_regions()),
"Unexpected free regions in MIR: {:?}",
body,
);
body
})
}
///////////////////////////////////////////////////////////////////////////
// BuildMir -- walks a crate, looking for fn items and methods to build MIR from
fn liberated_closure_env_ty(
tcx: TyCtxt<'_>,
closure_expr_id: hir::HirId,
body_id: hir::BodyId,
) -> Ty<'_> {
let closure_ty = tcx.typeck_body(body_id).node_type(closure_expr_id);
let ty::Closure(closure_def_id, closure_substs) = *closure_ty.kind() else {
bug!("closure expr does not have closure type: {:?}", closure_ty);
};
let bound_vars =
tcx.mk_bound_variable_kinds(std::iter::once(ty::BoundVariableKind::Region(ty::BrEnv)));
let br =
ty::BoundRegion { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind: ty::BrEnv };
let env_region = ty::ReLateBound(ty::INNERMOST, br);
let closure_env_ty = tcx.closure_env_ty(closure_def_id, closure_substs, env_region).unwrap();
tcx.erase_late_bound_regions(ty::Binder::bind_with_vars(closure_env_ty, bound_vars))
}
#[derive(Debug, PartialEq, Eq)]
enum BlockFrame {
/// Evaluation is currently within a statement.
///
/// Examples include:
/// 1. `EXPR;`
/// 2. `let _ = EXPR;`
/// 3. `let x = EXPR;`
Statement {
/// If true, then statement discards result from evaluating
/// the expression (such as examples 1 and 2 above).
ignores_expr_result: bool,
},
/// Evaluation is currently within the tail expression of a block.
///
/// Example: `{ STMT_1; STMT_2; EXPR }`
TailExpr {
/// If true, then the surrounding context of the block ignores
/// the result of evaluating the block's tail expression.
///
/// Example: `let _ = { STMT_1; EXPR };`
tail_result_is_ignored: bool,
/// `Span` of the tail expression.
span: Span,
},
/// Generic mark meaning that the block occurred as a subexpression
/// where the result might be used.
///
/// Examples: `foo(EXPR)`, `match EXPR { ... }`
SubExpr,
}
impl BlockFrame {
fn is_tail_expr(&self) -> bool {
match *self {
BlockFrame::TailExpr { .. } => true,
BlockFrame::Statement { .. } | BlockFrame::SubExpr => false,
}
}
fn is_statement(&self) -> bool {
match *self {
BlockFrame::Statement { .. } => true,
BlockFrame::TailExpr { .. } | BlockFrame::SubExpr => false,
}
}
}
#[derive(Debug)]
struct BlockContext(Vec<BlockFrame>);
struct Builder<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
infcx: &'a InferCtxt<'a, 'tcx>,
typeck_results: &'tcx TypeckResults<'tcx>,
region_scope_tree: &'tcx region::ScopeTree,
param_env: ty::ParamEnv<'tcx>,
thir: &'a Thir<'tcx>,
cfg: CFG<'tcx>,
def_id: DefId,
hir_id: hir::HirId,
parent_module: DefId,
check_overflow: bool,
fn_span: Span,
arg_count: usize,
generator_kind: Option<GeneratorKind>,
/// The current set of scopes, updated as we traverse;
/// see the `scope` module for more details.
scopes: scope::Scopes<'tcx>,
/// The block-context: each time we build the code within an thir::Block,
/// we push a frame here tracking whether we are building a statement or
/// if we are pushing the tail expression of the block. This is used to
/// embed information in generated temps about whether they were created
/// for a block tail expression or not.
///
/// It would be great if we could fold this into `self.scopes`
/// somehow, but right now I think that is very tightly tied to
/// the code generation in ways that we cannot (or should not)
/// start just throwing new entries onto that vector in order to
/// distinguish the context of EXPR1 from the context of EXPR2 in
/// `{ STMTS; EXPR1 } + EXPR2`.
block_context: BlockContext,
/// The current unsafe block in scope
in_scope_unsafe: Safety,
/// The vector of all scopes that we have created thus far;
/// we track this for debuginfo later.
source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
source_scope: SourceScope,
/// The guard-context: each time we build the guard expression for
/// a match arm, we push onto this stack, and then pop when we
/// finish building it.
guard_context: Vec<GuardFrame>,
/// Maps `HirId`s of variable bindings to the `Local`s created for them.
/// (A match binding can have two locals; the 2nd is for the arm's guard.)
var_indices: FxHashMap<LocalVarId, LocalsForNode>,
local_decls: IndexVec<Local, LocalDecl<'tcx>>,
canonical_user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
upvar_mutbls: Vec<Mutability>,
unit_temp: Option<Place<'tcx>>,
var_debug_info: Vec<VarDebugInfo<'tcx>>,
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn is_bound_var_in_guard(&self, id: LocalVarId) -> bool {
self.guard_context.iter().any(|frame| frame.locals.iter().any(|local| local.id == id))
}
fn var_local_id(&self, id: LocalVarId, for_guard: ForGuard) -> Local {
self.var_indices[&id].local_id(for_guard)
}
}
impl BlockContext {
fn new() -> Self {
BlockContext(vec![])
}
fn push(&mut self, bf: BlockFrame) {
self.0.push(bf);
}
fn pop(&mut self) -> Option<BlockFrame> {
self.0.pop()
}
/// Traverses the frames on the `BlockContext`, searching for either
/// the first block-tail expression frame with no intervening
/// statement frame.
///
/// Notably, this skips over `SubExpr` frames; this method is
/// meant to be used in the context of understanding the
/// relationship of a temp (created within some complicated
/// expression) with its containing expression, and whether the
/// value of that *containing expression* (not the temp!) is
/// ignored.
fn currently_in_block_tail(&self) -> Option<BlockTailInfo> {
for bf in self.0.iter().rev() {
match bf {
BlockFrame::SubExpr => continue,
BlockFrame::Statement { .. } => break,
&BlockFrame::TailExpr { tail_result_is_ignored, span } => {
return Some(BlockTailInfo { tail_result_is_ignored, span });
}
}
}
None
}
/// Looks at the topmost frame on the BlockContext and reports
/// whether its one that would discard a block tail result.
///
/// Unlike `currently_within_ignored_tail_expression`, this does
/// *not* skip over `SubExpr` frames: here, we want to know
/// whether the block result itself is discarded.
fn currently_ignores_tail_results(&self) -> bool {
match self.0.last() {
// no context: conservatively assume result is read
None => false,
// sub-expression: block result feeds into some computation
Some(BlockFrame::SubExpr) => false,
// otherwise: use accumulated is_ignored state.
Some(
BlockFrame::TailExpr { tail_result_is_ignored: ignored, .. }
| BlockFrame::Statement { ignores_expr_result: ignored },
) => *ignored,
}
}
}
#[derive(Debug)]
enum LocalsForNode {
/// In the usual case, a `HirId` for an identifier maps to at most
/// one `Local` declaration.
One(Local),
/// The exceptional case is identifiers in a match arm's pattern
/// that are referenced in a guard of that match arm. For these,
/// we have `2` Locals.
///
/// * `for_arm_body` is the Local used in the arm body (which is
/// just like the `One` case above),
///
/// * `ref_for_guard` is the Local used in the arm's guard (which
/// is a reference to a temp that is an alias of
/// `for_arm_body`).
ForGuard { ref_for_guard: Local, for_arm_body: Local },
}
#[derive(Debug)]
struct GuardFrameLocal {
id: LocalVarId,
}
impl GuardFrameLocal {
fn new(id: LocalVarId, _binding_mode: BindingMode) -> Self {
GuardFrameLocal { id }
}
}
#[derive(Debug)]
struct GuardFrame {
/// These are the id's of names that are bound by patterns of the
/// arm of *this* guard.
///
/// (Frames higher up the stack will have the id's bound in arms
/// further out, such as in a case like:
///
/// match E1 {
/// P1(id1) if (... (match E2 { P2(id2) if ... => B2 })) => B1,
/// }
///
/// here, when building for FIXME.
locals: Vec<GuardFrameLocal>,
}
/// `ForGuard` indicates whether we are talking about:
/// 1. The variable for use outside of guard expressions, or
/// 2. The temp that holds reference to (1.), which is actually what the
/// guard expressions see.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum ForGuard {
RefWithinGuard,
OutsideGuard,
}
impl LocalsForNode {
fn local_id(&self, for_guard: ForGuard) -> Local {
match (self, for_guard) {
(&LocalsForNode::One(local_id), ForGuard::OutsideGuard)
| (
&LocalsForNode::ForGuard { ref_for_guard: local_id, .. },
ForGuard::RefWithinGuard,
)
| (&LocalsForNode::ForGuard { for_arm_body: local_id, .. }, ForGuard::OutsideGuard) => {
local_id
}
(&LocalsForNode::One(_), ForGuard::RefWithinGuard) => {
bug!("anything with one local should never be within a guard.")
}
}
}
}
struct CFG<'tcx> {
basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
}
rustc_index::newtype_index! {
struct ScopeId { .. }
}
#[derive(Debug)]
enum NeedsTemporary {
/// Use this variant when whatever you are converting with `as_operand`
/// is the last thing you are converting. This means that if we introduced
/// an intermediate temporary, we'd only read it immediately after, so we can
/// also avoid it.
No,
/// For all cases where you aren't sure or that are too expensive to compute
/// for now. It is always safe to fall back to this.
Maybe,
}
///////////////////////////////////////////////////////////////////////////
/// The `BlockAnd` "monad" packages up the new basic block along with a
/// produced value (sometimes just unit, of course). The `unpack!`
/// macro (and methods below) makes working with `BlockAnd` much more
/// convenient.
#[must_use = "if you don't use one of these results, you're leaving a dangling edge"]
struct BlockAnd<T>(BasicBlock, T);
trait BlockAndExtension {
fn and<T>(self, v: T) -> BlockAnd<T>;
fn unit(self) -> BlockAnd<()>;
}
impl BlockAndExtension for BasicBlock {
fn and<T>(self, v: T) -> BlockAnd<T> {
BlockAnd(self, v)
}
fn unit(self) -> BlockAnd<()> {
BlockAnd(self, ())
}
}
/// Update a block pointer and return the value.
/// Use it like `let x = unpack!(block = self.foo(block, foo))`.
macro_rules! unpack {
($x:ident = $c:expr) => {{
let BlockAnd(b, v) = $c;
$x = b;
v
}};
($c:expr) => {{
let BlockAnd(b, ()) = $c;
b
}};
}
///////////////////////////////////////////////////////////////////////////
/// the main entry point for building MIR for a function
struct ArgInfo<'tcx>(
Ty<'tcx>,
Option<Span>,
Option<&'tcx hir::Param<'tcx>>,
Option<ImplicitSelfKind>,
);
fn construct_fn<'tcx, A>(
thir: &Thir<'tcx>,
infcx: &InferCtxt<'_, 'tcx>,
fn_def: ty::WithOptConstParam<LocalDefId>,
fn_id: hir::HirId,
arguments: A,
safety: Safety,
abi: Abi,
return_ty: Ty<'tcx>,
return_ty_span: Span,
body: &'tcx hir::Body<'tcx>,
expr: ExprId,
span_with_body: Span,
) -> Body<'tcx>
where
A: Iterator<Item = ArgInfo<'tcx>>,
{
let arguments: Vec<_> = arguments.collect();
let tcx = infcx.tcx;
let span = tcx.hir().span(fn_id);
let mut builder = Builder::new(
thir,
infcx,
fn_def,
fn_id,
span_with_body,
arguments.len(),
safety,
return_ty,
return_ty_span,
body.generator_kind,
);
let call_site_scope =
region::Scope { id: body.value.hir_id.local_id, data: region::ScopeData::CallSite };
let arg_scope =
region::Scope { id: body.value.hir_id.local_id, data: region::ScopeData::Arguments };
let source_info = builder.source_info(span);
let call_site_s = (call_site_scope, source_info);
unpack!(builder.in_scope(call_site_s, LintLevel::Inherited, |builder| {
let arg_scope_s = (arg_scope, source_info);
// Attribute epilogue to function's closing brace
let fn_end = span_with_body.shrink_to_hi();
let return_block =
unpack!(builder.in_breakable_scope(None, Place::return_place(), fn_end, |builder| {
Some(builder.in_scope(arg_scope_s, LintLevel::Inherited, |builder| {
builder.args_and_body(
START_BLOCK,
fn_def.did,
&arguments,
arg_scope,
&thir[expr],
)
}))
}));
let source_info = builder.source_info(fn_end);
builder.cfg.terminate(return_block, source_info, TerminatorKind::Return);
builder.build_drop_trees();
return_block.unit()
}));
let spread_arg = if abi == Abi::RustCall {
// RustCall pseudo-ABI untuples the last argument.
Some(Local::new(arguments.len()))
} else {
None
};
let mut body = builder.finish();
body.spread_arg = spread_arg;
body
}
fn construct_const<'a, 'tcx>(
thir: &'a Thir<'tcx>,
infcx: &'a InferCtxt<'a, 'tcx>,
expr: ExprId,
def: ty::WithOptConstParam<LocalDefId>,
hir_id: hir::HirId,
const_ty: Ty<'tcx>,
const_ty_span: Span,
) -> Body<'tcx> {
let tcx = infcx.tcx;
let span = tcx.hir().span(hir_id);
let mut builder = Builder::new(
thir,
infcx,
def,
hir_id,
span,
0,
Safety::Safe,
const_ty,
const_ty_span,
None,
);
let mut block = START_BLOCK;
unpack!(block = builder.expr_into_dest(Place::return_place(), block, &thir[expr]));
let source_info = builder.source_info(span);
builder.cfg.terminate(block, source_info, TerminatorKind::Return);
builder.build_drop_trees();
builder.finish()
}
/// Construct MIR for an item that has had errors in type checking.
///
/// This is required because we may still want to run MIR passes on an item
/// with type errors, but normal MIR construction can't handle that in general.
fn construct_error<'a, 'tcx>(
infcx: &'a InferCtxt<'a, 'tcx>,
def: ty::WithOptConstParam<LocalDefId>,
hir_id: hir::HirId,
body_id: hir::BodyId,
body_owner_kind: hir::BodyOwnerKind,
err: ErrorGuaranteed,
) -> Body<'tcx> {
let tcx = infcx.tcx;
let span = tcx.hir().span(hir_id);
let ty = tcx.ty_error();
let generator_kind = tcx.hir().body(body_id).generator_kind;
let num_params = match body_owner_kind {
hir::BodyOwnerKind::Fn => tcx.hir().fn_decl_by_hir_id(hir_id).unwrap().inputs.len(),
hir::BodyOwnerKind::Closure => {
if generator_kind.is_some() {
// Generators have an implicit `self` parameter *and* a possibly
// implicit resume parameter.
2
} else {
// The implicit self parameter adds another local in MIR.
1 + tcx.hir().fn_decl_by_hir_id(hir_id).unwrap().inputs.len()
}
}
hir::BodyOwnerKind::Const => 0,
hir::BodyOwnerKind::Static(_) => 0,
};
let mut cfg = CFG { basic_blocks: IndexVec::new() };
let mut source_scopes = IndexVec::new();
let mut local_decls = IndexVec::from_elem_n(LocalDecl::new(ty, span), 1);
cfg.start_new_block();
source_scopes.push(SourceScopeData {
span,
parent_scope: None,
inlined: None,
inlined_parent_scope: None,
local_data: ClearCrossCrate::Set(SourceScopeLocalData {
lint_root: hir_id,
safety: Safety::Safe,
}),
});
let source_info = SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE };
// Some MIR passes will expect the number of parameters to match the
// function declaration.
for _ in 0..num_params {
local_decls.push(LocalDecl::with_source_info(ty, source_info));
}
cfg.terminate(START_BLOCK, source_info, TerminatorKind::Unreachable);
let mut body = Body::new(
MirSource::item(def.did.to_def_id()),
cfg.basic_blocks,
source_scopes,
local_decls,
IndexVec::new(),
num_params,
vec![],
span,
generator_kind,
Some(err),
);
body.generator.as_mut().map(|gen| gen.yield_ty = Some(ty));
body
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn new(
thir: &'a Thir<'tcx>,
infcx: &'a InferCtxt<'a, 'tcx>,
def: ty::WithOptConstParam<LocalDefId>,
hir_id: hir::HirId,
span: Span,
arg_count: usize,
safety: Safety,
return_ty: Ty<'tcx>,
return_span: Span,
generator_kind: Option<GeneratorKind>,
) -> Builder<'a, 'tcx> {
let tcx = infcx.tcx;
let attrs = tcx.hir().attrs(hir_id);
// Some functions always have overflow checks enabled,
// however, they may not get codegen'd, depending on
// the settings for the crate they are codegened in.
let mut check_overflow = tcx.sess.contains_name(attrs, sym::rustc_inherit_overflow_checks);
// Respect -C overflow-checks.
check_overflow |= tcx.sess.overflow_checks();
// Constants always need overflow checks.
check_overflow |= matches!(
tcx.hir().body_owner_kind(def.did),
hir::BodyOwnerKind::Const | hir::BodyOwnerKind::Static(_)
);
let lint_level = LintLevel::Explicit(hir_id);
let param_env = tcx.param_env(def.did);
let mut builder = Builder {
thir,
tcx,
infcx,
typeck_results: tcx.typeck_opt_const_arg(def),
region_scope_tree: tcx.region_scope_tree(def.did),
param_env,
def_id: def.did.to_def_id(),
hir_id,
parent_module: tcx.parent_module(hir_id).to_def_id(),
check_overflow,
cfg: CFG { basic_blocks: IndexVec::new() },
fn_span: span,
arg_count,
generator_kind,
scopes: scope::Scopes::new(),
block_context: BlockContext::new(),
source_scopes: IndexVec::new(),
source_scope: OUTERMOST_SOURCE_SCOPE,
guard_context: vec![],
in_scope_unsafe: safety,
local_decls: IndexVec::from_elem_n(LocalDecl::new(return_ty, return_span), 1),
canonical_user_type_annotations: IndexVec::new(),
upvar_mutbls: vec![],
var_indices: Default::default(),
unit_temp: None,
var_debug_info: vec![],
};
assert_eq!(builder.cfg.start_new_block(), START_BLOCK);
assert_eq!(
builder.new_source_scope(span, lint_level, Some(safety)),
OUTERMOST_SOURCE_SCOPE
);
builder.source_scopes[OUTERMOST_SOURCE_SCOPE].parent_scope = None;
builder
}
fn finish(self) -> Body<'tcx> {
for (index, block) in self.cfg.basic_blocks.iter().enumerate() {
if block.terminator.is_none() {
span_bug!(self.fn_span, "no terminator on block {:?}", index);
}
}
Body::new(
MirSource::item(self.def_id),
self.cfg.basic_blocks,
self.source_scopes,
self.local_decls,
self.canonical_user_type_annotations,
self.arg_count,
self.var_debug_info,
self.fn_span,
self.generator_kind,
self.typeck_results.tainted_by_errors,
)
}
fn args_and_body(
&mut self,
mut block: BasicBlock,
fn_def_id: LocalDefId,
arguments: &[ArgInfo<'tcx>],
argument_scope: region::Scope,
expr: &Expr<'tcx>,
) -> BlockAnd<()> {
// Allocate locals for the function arguments
for &ArgInfo(ty, _, arg_opt, _) in arguments.iter() {
let source_info =
SourceInfo::outermost(arg_opt.map_or(self.fn_span, |arg| arg.pat.span));
let arg_local = self.local_decls.push(LocalDecl::with_source_info(ty, source_info));
// If this is a simple binding pattern, give debuginfo a nice name.
if let Some(arg) = arg_opt && let Some(ident) = arg.pat.simple_ident() {
self.var_debug_info.push(VarDebugInfo {
name: ident.name,
source_info,
value: VarDebugInfoContents::Place(arg_local.into()),
});
}
}
let tcx = self.tcx;
let tcx_hir = tcx.hir();
let hir_typeck_results = self.typeck_results;
// In analyze_closure() in upvar.rs we gathered a list of upvars used by an
// indexed closure and we stored in a map called closure_min_captures in TypeckResults
// with the closure's DefId. Here, we run through that vec of UpvarIds for
// the given closure and use the necessary information to create upvar
// debuginfo and to fill `self.upvar_mutbls`.
if hir_typeck_results.closure_min_captures.get(&fn_def_id).is_some() {
let mut closure_env_projs = vec![];
let mut closure_ty = self.local_decls[ty::CAPTURE_STRUCT_LOCAL].ty;
if let ty::Ref(_, ty, _) = closure_ty.kind() {
closure_env_projs.push(ProjectionElem::Deref);
closure_ty = *ty;
}
let upvar_substs = match closure_ty.kind() {
ty::Closure(_, substs) => ty::UpvarSubsts::Closure(substs),
ty::Generator(_, substs, _) => ty::UpvarSubsts::Generator(substs),
_ => span_bug!(self.fn_span, "upvars with non-closure env ty {:?}", closure_ty),
};
let def_id = self.def_id.as_local().unwrap();
let capture_syms = tcx.symbols_for_closure_captures((def_id, fn_def_id));
let capture_tys = upvar_substs.upvar_tys();
let captures_with_tys = hir_typeck_results
.closure_min_captures_flattened(fn_def_id)
.zip(capture_tys.zip(capture_syms));
self.upvar_mutbls = captures_with_tys
.enumerate()
.map(|(i, (captured_place, (ty, sym)))| {
let capture = captured_place.info.capture_kind;
let var_id = match captured_place.place.base {
HirPlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
_ => bug!("Expected an upvar"),
};
let mutability = captured_place.mutability;
let mut projs = closure_env_projs.clone();
projs.push(ProjectionElem::Field(Field::new(i), ty));
match capture {
ty::UpvarCapture::ByValue => {}
ty::UpvarCapture::ByRef(..) => {
projs.push(ProjectionElem::Deref);
}
};
self.var_debug_info.push(VarDebugInfo {
name: *sym,
source_info: SourceInfo::outermost(tcx_hir.span(var_id)),
value: VarDebugInfoContents::Place(Place {
local: ty::CAPTURE_STRUCT_LOCAL,
projection: tcx.intern_place_elems(&projs),
}),
});
mutability
})
.collect();
}
let mut scope = None;
// Bind the argument patterns
for (index, arg_info) in arguments.iter().enumerate() {
// Function arguments always get the first Local indices after the return place
let local = Local::new(index + 1);
let place = Place::from(local);
let &ArgInfo(_, opt_ty_info, arg_opt, ref self_binding) = arg_info;
// Make sure we drop (parts of) the argument even when not matched on.
self.schedule_drop(
arg_opt.as_ref().map_or(expr.span, |arg| arg.pat.span),
argument_scope,
local,
DropKind::Value,
);
let Some(arg) = arg_opt else {
continue;
};
let pat = match tcx.hir().get(arg.pat.hir_id) {
Node::Pat(pat) => pat,
node => bug!("pattern became {:?}", node),
};
let pattern = pat_from_hir(tcx, self.param_env, self.typeck_results, pat);
let original_source_scope = self.source_scope;
let span = pattern.span;
self.set_correct_source_scope_for_arg(arg.hir_id, original_source_scope, span);
match *pattern.kind {
// Don't introduce extra copies for simple bindings
PatKind::Binding {
mutability,
var,
mode: BindingMode::ByValue,
subpattern: None,
..
} => {
self.local_decls[local].mutability = mutability;
self.local_decls[local].source_info.scope = self.source_scope;
self.local_decls[local].local_info = if let Some(kind) = self_binding {
Some(Box::new(LocalInfo::User(ClearCrossCrate::Set(
BindingForm::ImplicitSelf(*kind),
))))
} else {
let binding_mode = ty::BindingMode::BindByValue(mutability);
Some(Box::new(LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(
VarBindingForm {
binding_mode,
opt_ty_info,
opt_match_place: Some((Some(place), span)),
pat_span: span,
},
)))))
};
self.var_indices.insert(var, LocalsForNode::One(local));
}
_ => {
scope = self.declare_bindings(
scope,
expr.span,
&pattern,
matches::ArmHasGuard(false),
Some((Some(&place), span)),
);
let place_builder = PlaceBuilder::from(local);
unpack!(block = self.place_into_pattern(block, pattern, place_builder, false));
}
}
self.source_scope = original_source_scope;
}
// Enter the argument pattern bindings source scope, if it exists.
if let Some(source_scope) = scope {
self.source_scope = source_scope;
}
self.expr_into_dest(Place::return_place(), block, &expr)
}
fn set_correct_source_scope_for_arg(
&mut self,
arg_hir_id: hir::HirId,
original_source_scope: SourceScope,
pattern_span: Span,
) {
let tcx = self.tcx;
let current_root = tcx.maybe_lint_level_root_bounded(arg_hir_id, self.hir_id);
let parent_root = tcx.maybe_lint_level_root_bounded(
self.source_scopes[original_source_scope]
.local_data
.as_ref()
.assert_crate_local()
.lint_root,
self.hir_id,
);
if current_root != parent_root {
self.source_scope =
self.new_source_scope(pattern_span, LintLevel::Explicit(current_root), None);
}
}
fn get_unit_temp(&mut self) -> Place<'tcx> {
match self.unit_temp {
Some(tmp) => tmp,
None => {
let ty = self.tcx.mk_unit();
let fn_span = self.fn_span;
let tmp = self.temp(ty, fn_span);
self.unit_temp = Some(tmp);
tmp
}
}
}
}
fn parse_float_into_constval<'tcx>(
num: Symbol,
float_ty: ty::FloatTy,
neg: bool,
) -> Option<ConstValue<'tcx>> {
parse_float_into_scalar(num, float_ty, neg).map(ConstValue::Scalar)
}
pub(crate) fn parse_float_into_scalar(
num: Symbol,
float_ty: ty::FloatTy,
neg: bool,
) -> Option<Scalar> {
let num = num.as_str();
match float_ty {
ty::FloatTy::F32 => {
let Ok(rust_f) = num.parse::<f32>() else { return None };
let mut f = num.parse::<Single>().unwrap_or_else(|e| {
panic!("apfloat::ieee::Single failed to parse `{}`: {:?}", num, e)
});
assert!(
u128::from(rust_f.to_bits()) == f.to_bits(),
"apfloat::ieee::Single gave different result for `{}`: \
{}({:#x}) vs Rust's {}({:#x})",
rust_f,
f,
f.to_bits(),
Single::from_bits(rust_f.to_bits().into()),
rust_f.to_bits()
);
if neg {
f = -f;
}
Some(Scalar::from_f32(f))
}
ty::FloatTy::F64 => {
let Ok(rust_f) = num.parse::<f64>() else { return None };
let mut f = num.parse::<Double>().unwrap_or_else(|e| {
panic!("apfloat::ieee::Double failed to parse `{}`: {:?}", num, e)
});
assert!(
u128::from(rust_f.to_bits()) == f.to_bits(),
"apfloat::ieee::Double gave different result for `{}`: \
{}({:#x}) vs Rust's {}({:#x})",
rust_f,
f,
f.to_bits(),
Double::from_bits(rust_f.to_bits().into()),
rust_f.to_bits()
);
if neg {
f = -f;
}
Some(Scalar::from_f64(f))
}
}
}
///////////////////////////////////////////////////////////////////////////
// Builder methods are broken up into modules, depending on what kind
// of thing is being lowered. Note that they use the `unpack` macro
// above extensively.
mod block;
mod cfg;
mod expr;
mod matches;
mod misc;
mod scope;
pub(crate) use expr::category::Category as ExprCategory;
|