summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_mir_dataflow/src/value_analysis.rs
blob: 0522c657939f5e100c7827dd319862ce3eedaf09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
//! This module provides a framework on top of the normal MIR dataflow framework to simplify the
//! implementation of analyses that track information about the values stored in certain places.
//! We are using the term "place" here to refer to a `mir::Place` (a place expression) instead of
//! an `interpret::Place` (a memory location).
//!
//! The default methods of [`ValueAnalysis`] (prefixed with `super_` instead of `handle_`)
//! provide some behavior that should be valid for all abstract domains that are based only on the
//! value stored in a certain place. On top of these default rules, an implementation should
//! override some of the `handle_` methods. For an example, see `ConstAnalysis`.
//!
//! An implementation must also provide a [`Map`]. Before the analysis begins, all places that
//! should be tracked during the analysis must be registered. During the analysis, no new places
//! can be registered. The [`State`] can be queried to retrieve the abstract value stored for a
//! certain place by passing the map.
//!
//! This framework is currently experimental. Originally, it supported shared references and enum
//! variants. However, it was discovered that both of these were unsound, and especially references
//! had subtle but serious issues. In the future, they could be added back in, but we should clarify
//! the rules for optimizations that rely on the aliasing model first.
//!
//!
//! # Notes
//!
//! - The bottom state denotes uninitialized memory. Because we are only doing a sound approximation
//! of the actual execution, we can also use this state for places where access would be UB.
//!
//! - The assignment logic in `State::assign_place_idx` assumes that the places are non-overlapping,
//! or identical. Note that this refers to place expressions, not memory locations.
//!
//! - Currently, places that have their reference taken cannot be tracked. Although this would be
//! possible, it has to rely on some aliasing model, which we are not ready to commit to yet.
//! Because of that, we can assume that the only way to change the value behind a tracked place is
//! by direct assignment.

use std::fmt::{Debug, Formatter};

use rustc_data_structures::fx::FxHashMap;
use rustc_index::vec::IndexVec;
use rustc_middle::mir::visit::{MutatingUseContext, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_target::abi::VariantIdx;

use crate::lattice::{HasBottom, HasTop};
use crate::{
    fmt::DebugWithContext, Analysis, AnalysisDomain, CallReturnPlaces, JoinSemiLattice,
    SwitchIntEdgeEffects,
};

pub trait ValueAnalysis<'tcx> {
    /// For each place of interest, the analysis tracks a value of the given type.
    type Value: Clone + JoinSemiLattice + HasBottom + HasTop;

    const NAME: &'static str;

    fn map(&self) -> &Map;

    fn handle_statement(&self, statement: &Statement<'tcx>, state: &mut State<Self::Value>) {
        self.super_statement(statement, state)
    }

    fn super_statement(&self, statement: &Statement<'tcx>, state: &mut State<Self::Value>) {
        match &statement.kind {
            StatementKind::Assign(box (place, rvalue)) => {
                self.handle_assign(*place, rvalue, state);
            }
            StatementKind::SetDiscriminant { .. } => {
                // Could treat this as writing a constant to a pseudo-place.
                // But discriminants are currently not tracked, so we do nothing.
                // Related: https://github.com/rust-lang/unsafe-code-guidelines/issues/84
            }
            StatementKind::Intrinsic(box intrinsic) => {
                self.handle_intrinsic(intrinsic, state);
            }
            StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
                // StorageLive leaves the local in an uninitialized state.
                // StorageDead makes it UB to access the local afterwards.
                state.flood_with(Place::from(*local).as_ref(), self.map(), Self::Value::bottom());
            }
            StatementKind::Deinit(box place) => {
                // Deinit makes the place uninitialized.
                state.flood_with(place.as_ref(), self.map(), Self::Value::bottom());
            }
            StatementKind::Retag(..) => {
                // We don't track references.
            }
            StatementKind::Nop
            | StatementKind::FakeRead(..)
            | StatementKind::Coverage(..)
            | StatementKind::AscribeUserType(..) => (),
        }
    }

    fn handle_intrinsic(
        &self,
        intrinsic: &NonDivergingIntrinsic<'tcx>,
        state: &mut State<Self::Value>,
    ) {
        self.super_intrinsic(intrinsic, state);
    }

    fn super_intrinsic(
        &self,
        intrinsic: &NonDivergingIntrinsic<'tcx>,
        state: &mut State<Self::Value>,
    ) {
        match intrinsic {
            NonDivergingIntrinsic::Assume(..) => {
                // Could use this, but ignoring it is sound.
            }
            NonDivergingIntrinsic::CopyNonOverlapping(CopyNonOverlapping { dst, .. }) => {
                if let Some(place) = dst.place() {
                    state.flood(place.as_ref(), self.map());
                }
            }
        }
    }

    fn handle_assign(
        &self,
        target: Place<'tcx>,
        rvalue: &Rvalue<'tcx>,
        state: &mut State<Self::Value>,
    ) {
        self.super_assign(target, rvalue, state)
    }

    fn super_assign(
        &self,
        target: Place<'tcx>,
        rvalue: &Rvalue<'tcx>,
        state: &mut State<Self::Value>,
    ) {
        let result = self.handle_rvalue(rvalue, state);
        state.assign(target.as_ref(), result, self.map());
    }

    fn handle_rvalue(
        &self,
        rvalue: &Rvalue<'tcx>,
        state: &mut State<Self::Value>,
    ) -> ValueOrPlace<Self::Value> {
        self.super_rvalue(rvalue, state)
    }

    fn super_rvalue(
        &self,
        rvalue: &Rvalue<'tcx>,
        state: &mut State<Self::Value>,
    ) -> ValueOrPlace<Self::Value> {
        match rvalue {
            Rvalue::Use(operand) => self.handle_operand(operand, state),
            Rvalue::CopyForDeref(place) => self.handle_operand(&Operand::Copy(*place), state),
            Rvalue::Ref(..) | Rvalue::AddressOf(..) => {
                // We don't track such places.
                ValueOrPlace::top()
            }
            Rvalue::Repeat(..)
            | Rvalue::ThreadLocalRef(..)
            | Rvalue::Len(..)
            | Rvalue::Cast(..)
            | Rvalue::BinaryOp(..)
            | Rvalue::CheckedBinaryOp(..)
            | Rvalue::NullaryOp(..)
            | Rvalue::UnaryOp(..)
            | Rvalue::Discriminant(..)
            | Rvalue::Aggregate(..)
            | Rvalue::ShallowInitBox(..) => {
                // No modification is possible through these r-values.
                ValueOrPlace::top()
            }
        }
    }

    fn handle_operand(
        &self,
        operand: &Operand<'tcx>,
        state: &mut State<Self::Value>,
    ) -> ValueOrPlace<Self::Value> {
        self.super_operand(operand, state)
    }

    fn super_operand(
        &self,
        operand: &Operand<'tcx>,
        state: &mut State<Self::Value>,
    ) -> ValueOrPlace<Self::Value> {
        match operand {
            Operand::Constant(box constant) => {
                ValueOrPlace::Value(self.handle_constant(constant, state))
            }
            Operand::Copy(place) | Operand::Move(place) => {
                // On move, we would ideally flood the place with bottom. But with the current
                // framework this is not possible (similar to `InterpCx::eval_operand`).
                self.map()
                    .find(place.as_ref())
                    .map(ValueOrPlace::Place)
                    .unwrap_or(ValueOrPlace::top())
            }
        }
    }

    fn handle_constant(
        &self,
        constant: &Constant<'tcx>,
        state: &mut State<Self::Value>,
    ) -> Self::Value {
        self.super_constant(constant, state)
    }

    fn super_constant(
        &self,
        _constant: &Constant<'tcx>,
        _state: &mut State<Self::Value>,
    ) -> Self::Value {
        Self::Value::top()
    }

    /// The effect of a successful function call return should not be
    /// applied here, see [`Analysis::apply_terminator_effect`].
    fn handle_terminator(&self, terminator: &Terminator<'tcx>, state: &mut State<Self::Value>) {
        self.super_terminator(terminator, state)
    }

    fn super_terminator(&self, terminator: &Terminator<'tcx>, _state: &mut State<Self::Value>) {
        match &terminator.kind {
            TerminatorKind::Call { .. } | TerminatorKind::InlineAsm { .. } => {
                // Effect is applied by `handle_call_return`.
            }
            TerminatorKind::Drop { .. } => {
                // We don't track dropped places.
            }
            TerminatorKind::DropAndReplace { .. } | TerminatorKind::Yield { .. } => {
                // They would have an effect, but are not allowed in this phase.
                bug!("encountered disallowed terminator");
            }
            TerminatorKind::Goto { .. }
            | TerminatorKind::SwitchInt { .. }
            | TerminatorKind::Resume
            | TerminatorKind::Abort
            | TerminatorKind::Return
            | TerminatorKind::Unreachable
            | TerminatorKind::Assert { .. }
            | TerminatorKind::GeneratorDrop
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::FalseUnwind { .. } => {
                // These terminators have no effect on the analysis.
            }
        }
    }

    fn handle_call_return(
        &self,
        return_places: CallReturnPlaces<'_, 'tcx>,
        state: &mut State<Self::Value>,
    ) {
        self.super_call_return(return_places, state)
    }

    fn super_call_return(
        &self,
        return_places: CallReturnPlaces<'_, 'tcx>,
        state: &mut State<Self::Value>,
    ) {
        return_places.for_each(|place| {
            state.flood(place.as_ref(), self.map());
        })
    }

    fn handle_switch_int(
        &self,
        discr: &Operand<'tcx>,
        apply_edge_effects: &mut impl SwitchIntEdgeEffects<State<Self::Value>>,
    ) {
        self.super_switch_int(discr, apply_edge_effects)
    }

    fn super_switch_int(
        &self,
        _discr: &Operand<'tcx>,
        _apply_edge_effects: &mut impl SwitchIntEdgeEffects<State<Self::Value>>,
    ) {
    }

    fn wrap(self) -> ValueAnalysisWrapper<Self>
    where
        Self: Sized,
    {
        ValueAnalysisWrapper(self)
    }
}

pub struct ValueAnalysisWrapper<T>(pub T);

impl<'tcx, T: ValueAnalysis<'tcx>> AnalysisDomain<'tcx> for ValueAnalysisWrapper<T> {
    type Domain = State<T::Value>;

    type Direction = crate::Forward;

    const NAME: &'static str = T::NAME;

    fn bottom_value(&self, _body: &Body<'tcx>) -> Self::Domain {
        State(StateData::Unreachable)
    }

    fn initialize_start_block(&self, body: &Body<'tcx>, state: &mut Self::Domain) {
        // The initial state maps all tracked places of argument projections to ⊤ and the rest to ⊥.
        assert!(matches!(state.0, StateData::Unreachable));
        let values = IndexVec::from_elem_n(T::Value::bottom(), self.0.map().value_count);
        *state = State(StateData::Reachable(values));
        for arg in body.args_iter() {
            state.flood(PlaceRef { local: arg, projection: &[] }, self.0.map());
        }
    }
}

impl<'tcx, T> Analysis<'tcx> for ValueAnalysisWrapper<T>
where
    T: ValueAnalysis<'tcx>,
{
    fn apply_statement_effect(
        &self,
        state: &mut Self::Domain,
        statement: &Statement<'tcx>,
        _location: Location,
    ) {
        if state.is_reachable() {
            self.0.handle_statement(statement, state);
        }
    }

    fn apply_terminator_effect(
        &self,
        state: &mut Self::Domain,
        terminator: &Terminator<'tcx>,
        _location: Location,
    ) {
        if state.is_reachable() {
            self.0.handle_terminator(terminator, state);
        }
    }

    fn apply_call_return_effect(
        &self,
        state: &mut Self::Domain,
        _block: BasicBlock,
        return_places: crate::CallReturnPlaces<'_, 'tcx>,
    ) {
        if state.is_reachable() {
            self.0.handle_call_return(return_places, state)
        }
    }

    fn apply_switch_int_edge_effects(
        &self,
        _block: BasicBlock,
        discr: &Operand<'tcx>,
        apply_edge_effects: &mut impl SwitchIntEdgeEffects<Self::Domain>,
    ) {
        // FIXME: Dataflow framework provides no access to current state here.
        self.0.handle_switch_int(discr, apply_edge_effects)
    }
}

rustc_index::newtype_index!(
    /// This index uniquely identifies a place.
    ///
    /// Not every place has a `PlaceIndex`, and not every `PlaceIndex` correspondends to a tracked
    /// place. However, every tracked place and all places along its projection have a `PlaceIndex`.
    pub struct PlaceIndex {}
);

rustc_index::newtype_index!(
    /// This index uniquely identifies a tracked place and therefore a slot in [`State`].
    ///
    /// It is an implementation detail of this module.
    struct ValueIndex {}
);

/// See [`State`].
#[derive(PartialEq, Eq, Debug)]
enum StateData<V> {
    Reachable(IndexVec<ValueIndex, V>),
    Unreachable,
}

impl<V: Clone> Clone for StateData<V> {
    fn clone(&self) -> Self {
        match self {
            Self::Reachable(x) => Self::Reachable(x.clone()),
            Self::Unreachable => Self::Unreachable,
        }
    }

    fn clone_from(&mut self, source: &Self) {
        match (&mut *self, source) {
            (Self::Reachable(x), Self::Reachable(y)) => {
                // We go through `raw` here, because `IndexVec` currently has a naive `clone_from`.
                x.raw.clone_from(&y.raw);
            }
            _ => *self = source.clone(),
        }
    }
}

/// The dataflow state for an instance of [`ValueAnalysis`].
///
/// Every instance specifies a lattice that represents the possible values of a single tracked
/// place. If we call this lattice `V` and set of tracked places `P`, then a [`State`] is an
/// element of `{unreachable} ∪ (P -> V)`. This again forms a lattice, where the bottom element is
/// `unreachable` and the top element is the mapping `p ↦ ⊤`. Note that the mapping `p ↦ ⊥` is not
/// the bottom element (because joining an unreachable and any other reachable state yields a
/// reachable state). All operations on unreachable states are ignored.
///
/// Flooding means assigning a value (by default `⊤`) to all tracked projections of a given place.
#[derive(PartialEq, Eq, Debug)]
pub struct State<V>(StateData<V>);

impl<V: Clone> Clone for State<V> {
    fn clone(&self) -> Self {
        Self(self.0.clone())
    }

    fn clone_from(&mut self, source: &Self) {
        self.0.clone_from(&source.0);
    }
}

impl<V: Clone + HasTop + HasBottom> State<V> {
    pub fn is_reachable(&self) -> bool {
        matches!(&self.0, StateData::Reachable(_))
    }

    pub fn mark_unreachable(&mut self) {
        self.0 = StateData::Unreachable;
    }

    pub fn flood_all(&mut self) {
        self.flood_all_with(V::top())
    }

    pub fn flood_all_with(&mut self, value: V) {
        let StateData::Reachable(values) = &mut self.0 else { return };
        values.raw.fill(value);
    }

    pub fn flood_with(&mut self, place: PlaceRef<'_>, map: &Map, value: V) {
        if let Some(root) = map.find(place) {
            self.flood_idx_with(root, map, value);
        }
    }

    pub fn flood(&mut self, place: PlaceRef<'_>, map: &Map) {
        self.flood_with(place, map, V::top())
    }

    pub fn flood_idx_with(&mut self, place: PlaceIndex, map: &Map, value: V) {
        let StateData::Reachable(values) = &mut self.0 else { return };
        map.preorder_invoke(place, &mut |place| {
            if let Some(vi) = map.places[place].value_index {
                values[vi] = value.clone();
            }
        });
    }

    pub fn flood_idx(&mut self, place: PlaceIndex, map: &Map) {
        self.flood_idx_with(place, map, V::top())
    }

    /// Copies `source` to `target`, including all tracked places beneath.
    ///
    /// If `target` contains a place that is not contained in `source`, it will be overwritten with
    /// Top. Also, because this will copy all entries one after another, it may only be used for
    /// places that are non-overlapping or identical.
    pub fn assign_place_idx(&mut self, target: PlaceIndex, source: PlaceIndex, map: &Map) {
        let StateData::Reachable(values) = &mut self.0 else { return };

        // If both places are tracked, we copy the value to the target. If the target is tracked,
        // but the source is not, we have to invalidate the value in target. If the target is not
        // tracked, then we don't have to do anything.
        if let Some(target_value) = map.places[target].value_index {
            if let Some(source_value) = map.places[source].value_index {
                values[target_value] = values[source_value].clone();
            } else {
                values[target_value] = V::top();
            }
        }
        for target_child in map.children(target) {
            // Try to find corresponding child and recurse. Reasoning is similar as above.
            let projection = map.places[target_child].proj_elem.unwrap();
            if let Some(source_child) = map.projections.get(&(source, projection)) {
                self.assign_place_idx(target_child, *source_child, map);
            } else {
                self.flood_idx(target_child, map);
            }
        }
    }

    pub fn assign(&mut self, target: PlaceRef<'_>, result: ValueOrPlace<V>, map: &Map) {
        if let Some(target) = map.find(target) {
            self.assign_idx(target, result, map);
        } else {
            // We don't track this place nor any projections, assignment can be ignored.
        }
    }

    pub fn assign_idx(&mut self, target: PlaceIndex, result: ValueOrPlace<V>, map: &Map) {
        match result {
            ValueOrPlace::Value(value) => {
                // First flood the target place in case we also track any projections (although
                // this scenario is currently not well-supported by the API).
                self.flood_idx(target, map);
                let StateData::Reachable(values) = &mut self.0 else { return };
                if let Some(value_index) = map.places[target].value_index {
                    values[value_index] = value;
                }
            }
            ValueOrPlace::Place(source) => self.assign_place_idx(target, source, map),
        }
    }

    /// Retrieve the value stored for a place, or ⊤ if it is not tracked.
    pub fn get(&self, place: PlaceRef<'_>, map: &Map) -> V {
        map.find(place).map(|place| self.get_idx(place, map)).unwrap_or(V::top())
    }

    /// Retrieve the value stored for a place index, or ⊤ if it is not tracked.
    pub fn get_idx(&self, place: PlaceIndex, map: &Map) -> V {
        match &self.0 {
            StateData::Reachable(values) => {
                map.places[place].value_index.map(|v| values[v].clone()).unwrap_or(V::top())
            }
            StateData::Unreachable => {
                // Because this is unreachable, we can return any value we want.
                V::bottom()
            }
        }
    }
}

impl<V: JoinSemiLattice + Clone> JoinSemiLattice for State<V> {
    fn join(&mut self, other: &Self) -> bool {
        match (&mut self.0, &other.0) {
            (_, StateData::Unreachable) => false,
            (StateData::Unreachable, _) => {
                *self = other.clone();
                true
            }
            (StateData::Reachable(this), StateData::Reachable(other)) => this.join(other),
        }
    }
}

/// Partial mapping from [`Place`] to [`PlaceIndex`], where some places also have a [`ValueIndex`].
///
/// This data structure essentially maintains a tree of places and their projections. Some
/// additional bookkeeping is done, to speed up traversal over this tree:
/// - For iteration, every [`PlaceInfo`] contains an intrusive linked list of its children.
/// - To directly get the child for a specific projection, there is a `projections` map.
#[derive(Debug)]
pub struct Map {
    locals: IndexVec<Local, Option<PlaceIndex>>,
    projections: FxHashMap<(PlaceIndex, TrackElem), PlaceIndex>,
    places: IndexVec<PlaceIndex, PlaceInfo>,
    value_count: usize,
}

impl Map {
    fn new() -> Self {
        Self {
            locals: IndexVec::new(),
            projections: FxHashMap::default(),
            places: IndexVec::new(),
            value_count: 0,
        }
    }

    /// Returns a map that only tracks places whose type passes the filter.
    ///
    /// This is currently the only way to create a [`Map`]. The way in which the tracked places are
    /// chosen is an implementation detail and may not be relied upon (other than that their type
    /// passes the filter).
    #[instrument(skip_all, level = "debug")]
    pub fn from_filter<'tcx>(
        tcx: TyCtxt<'tcx>,
        body: &Body<'tcx>,
        filter: impl FnMut(Ty<'tcx>) -> bool,
    ) -> Self {
        let mut map = Self::new();
        let exclude = excluded_locals(body);
        map.register_with_filter(tcx, body, filter, &exclude);
        debug!("registered {} places ({} nodes in total)", map.value_count, map.places.len());
        map
    }

    /// Register all non-excluded places that pass the filter.
    fn register_with_filter<'tcx>(
        &mut self,
        tcx: TyCtxt<'tcx>,
        body: &Body<'tcx>,
        mut filter: impl FnMut(Ty<'tcx>) -> bool,
        exclude: &IndexVec<Local, bool>,
    ) {
        // We use this vector as stack, pushing and popping projections.
        let mut projection = Vec::new();
        for (local, decl) in body.local_decls.iter_enumerated() {
            if !exclude[local] {
                self.register_with_filter_rec(tcx, local, &mut projection, decl.ty, &mut filter);
            }
        }
    }

    /// Potentially register the (local, projection) place and its fields, recursively.
    ///
    /// Invariant: The projection must only contain fields.
    fn register_with_filter_rec<'tcx>(
        &mut self,
        tcx: TyCtxt<'tcx>,
        local: Local,
        projection: &mut Vec<PlaceElem<'tcx>>,
        ty: Ty<'tcx>,
        filter: &mut impl FnMut(Ty<'tcx>) -> bool,
    ) {
        // Note: The framework supports only scalars for now.
        if filter(ty) && ty.is_scalar() {
            // We know that the projection only contains trackable elements.
            let place = self.make_place(local, projection).unwrap();

            // Allocate a value slot if it doesn't have one.
            if self.places[place].value_index.is_none() {
                self.places[place].value_index = Some(self.value_count.into());
                self.value_count += 1;
            }
        }

        // Recurse with all fields of this place.
        iter_fields(ty, tcx, |variant, field, ty| {
            if variant.is_some() {
                // Downcasts are currently not supported.
                return;
            }
            projection.push(PlaceElem::Field(field, ty));
            self.register_with_filter_rec(tcx, local, projection, ty, filter);
            projection.pop();
        });
    }

    /// Tries to add the place to the map, without allocating a value slot.
    ///
    /// Can fail if the projection contains non-trackable elements.
    fn make_place<'tcx>(
        &mut self,
        local: Local,
        projection: &[PlaceElem<'tcx>],
    ) -> Result<PlaceIndex, ()> {
        // Get the base index of the local.
        let mut index =
            *self.locals.get_or_insert_with(local, || self.places.push(PlaceInfo::new(None)));

        // Apply the projection.
        for &elem in projection {
            let elem = elem.try_into()?;
            index = *self.projections.entry((index, elem)).or_insert_with(|| {
                // Prepend new child to the linked list.
                let next = self.places.push(PlaceInfo::new(Some(elem)));
                self.places[next].next_sibling = self.places[index].first_child;
                self.places[index].first_child = Some(next);
                next
            });
        }

        Ok(index)
    }

    /// Returns the number of tracked places, i.e., those for which a value can be stored.
    pub fn tracked_places(&self) -> usize {
        self.value_count
    }

    /// Applies a single projection element, yielding the corresponding child.
    pub fn apply(&self, place: PlaceIndex, elem: TrackElem) -> Option<PlaceIndex> {
        self.projections.get(&(place, elem)).copied()
    }

    /// Locates the given place, if it exists in the tree.
    pub fn find(&self, place: PlaceRef<'_>) -> Option<PlaceIndex> {
        let mut index = *self.locals.get(place.local)?.as_ref()?;

        for &elem in place.projection {
            index = self.apply(index, elem.try_into().ok()?)?;
        }

        Some(index)
    }

    /// Iterate over all direct children.
    pub fn children(&self, parent: PlaceIndex) -> impl Iterator<Item = PlaceIndex> + '_ {
        Children::new(self, parent)
    }

    /// Invoke a function on the given place and all descendants.
    pub fn preorder_invoke(&self, root: PlaceIndex, f: &mut impl FnMut(PlaceIndex)) {
        f(root);
        for child in self.children(root) {
            self.preorder_invoke(child, f);
        }
    }
}

/// This is the information tracked for every [`PlaceIndex`] and is stored by [`Map`].
///
/// Together, `first_child` and `next_sibling` form an intrusive linked list, which is used to
/// model a tree structure (a replacement for a member like `children: Vec<PlaceIndex>`).
#[derive(Debug)]
struct PlaceInfo {
    /// We store a [`ValueIndex`] if and only if the placed is tracked by the analysis.
    value_index: Option<ValueIndex>,

    /// The projection used to go from parent to this node (only None for root).
    proj_elem: Option<TrackElem>,

    /// The left-most child.
    first_child: Option<PlaceIndex>,

    /// Index of the sibling to the right of this node.
    next_sibling: Option<PlaceIndex>,
}

impl PlaceInfo {
    fn new(proj_elem: Option<TrackElem>) -> Self {
        Self { next_sibling: None, first_child: None, proj_elem, value_index: None }
    }
}

struct Children<'a> {
    map: &'a Map,
    next: Option<PlaceIndex>,
}

impl<'a> Children<'a> {
    fn new(map: &'a Map, parent: PlaceIndex) -> Self {
        Self { map, next: map.places[parent].first_child }
    }
}

impl<'a> Iterator for Children<'a> {
    type Item = PlaceIndex;

    fn next(&mut self) -> Option<Self::Item> {
        match self.next {
            Some(child) => {
                self.next = self.map.places[child].next_sibling;
                Some(child)
            }
            None => None,
        }
    }
}

/// Used as the result of an operand or r-value.
pub enum ValueOrPlace<V> {
    Value(V),
    Place(PlaceIndex),
}

impl<V: HasTop> ValueOrPlace<V> {
    pub fn top() -> Self {
        ValueOrPlace::Value(V::top())
    }
}

/// The set of projection elements that can be used by a tracked place.
///
/// Although only field projections are currently allowed, this could change in the future.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum TrackElem {
    Field(Field),
}

impl<V, T> TryFrom<ProjectionElem<V, T>> for TrackElem {
    type Error = ();

    fn try_from(value: ProjectionElem<V, T>) -> Result<Self, Self::Error> {
        match value {
            ProjectionElem::Field(field, _) => Ok(TrackElem::Field(field)),
            _ => Err(()),
        }
    }
}

/// Invokes `f` on all direct fields of `ty`.
fn iter_fields<'tcx>(
    ty: Ty<'tcx>,
    tcx: TyCtxt<'tcx>,
    mut f: impl FnMut(Option<VariantIdx>, Field, Ty<'tcx>),
) {
    match ty.kind() {
        ty::Tuple(list) => {
            for (field, ty) in list.iter().enumerate() {
                f(None, field.into(), ty);
            }
        }
        ty::Adt(def, substs) => {
            if def.is_union() {
                return;
            }
            for (v_index, v_def) in def.variants().iter_enumerated() {
                let variant = if def.is_struct() { None } else { Some(v_index) };
                for (f_index, f_def) in v_def.fields.iter().enumerate() {
                    let field_ty = f_def.ty(tcx, substs);
                    let field_ty = tcx
                        .try_normalize_erasing_regions(ty::ParamEnv::reveal_all(), field_ty)
                        .unwrap_or(field_ty);
                    f(variant, f_index.into(), field_ty);
                }
            }
        }
        ty::Closure(_, substs) => {
            iter_fields(substs.as_closure().tupled_upvars_ty(), tcx, f);
        }
        _ => (),
    }
}

/// Returns all locals with projections that have their reference or address taken.
fn excluded_locals(body: &Body<'_>) -> IndexVec<Local, bool> {
    struct Collector {
        result: IndexVec<Local, bool>,
    }

    impl<'tcx> Visitor<'tcx> for Collector {
        fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, _location: Location) {
            if context.is_borrow()
                || context.is_address_of()
                || context.is_drop()
                || context == PlaceContext::MutatingUse(MutatingUseContext::AsmOutput)
            {
                // A pointer to a place could be used to access other places with the same local,
                // hence we have to exclude the local completely.
                self.result[place.local] = true;
            }
        }
    }

    let mut collector = Collector { result: IndexVec::from_elem(false, &body.local_decls) };
    collector.visit_body(body);
    collector.result
}

/// This is used to visualize the dataflow analysis.
impl<'tcx, T> DebugWithContext<ValueAnalysisWrapper<T>> for State<T::Value>
where
    T: ValueAnalysis<'tcx>,
    T::Value: Debug,
{
    fn fmt_with(&self, ctxt: &ValueAnalysisWrapper<T>, f: &mut Formatter<'_>) -> std::fmt::Result {
        match &self.0 {
            StateData::Reachable(values) => debug_with_context(values, None, ctxt.0.map(), f),
            StateData::Unreachable => write!(f, "unreachable"),
        }
    }

    fn fmt_diff_with(
        &self,
        old: &Self,
        ctxt: &ValueAnalysisWrapper<T>,
        f: &mut Formatter<'_>,
    ) -> std::fmt::Result {
        match (&self.0, &old.0) {
            (StateData::Reachable(this), StateData::Reachable(old)) => {
                debug_with_context(this, Some(old), ctxt.0.map(), f)
            }
            _ => Ok(()), // Consider printing something here.
        }
    }
}

fn debug_with_context_rec<V: Debug + Eq>(
    place: PlaceIndex,
    place_str: &str,
    new: &IndexVec<ValueIndex, V>,
    old: Option<&IndexVec<ValueIndex, V>>,
    map: &Map,
    f: &mut Formatter<'_>,
) -> std::fmt::Result {
    if let Some(value) = map.places[place].value_index {
        match old {
            None => writeln!(f, "{}: {:?}", place_str, new[value])?,
            Some(old) => {
                if new[value] != old[value] {
                    writeln!(f, "\u{001f}-{}: {:?}", place_str, old[value])?;
                    writeln!(f, "\u{001f}+{}: {:?}", place_str, new[value])?;
                }
            }
        }
    }

    for child in map.children(place) {
        let info_elem = map.places[child].proj_elem.unwrap();
        let child_place_str = match info_elem {
            TrackElem::Field(field) => {
                if place_str.starts_with('*') {
                    format!("({}).{}", place_str, field.index())
                } else {
                    format!("{}.{}", place_str, field.index())
                }
            }
        };
        debug_with_context_rec(child, &child_place_str, new, old, map, f)?;
    }

    Ok(())
}

fn debug_with_context<V: Debug + Eq>(
    new: &IndexVec<ValueIndex, V>,
    old: Option<&IndexVec<ValueIndex, V>>,
    map: &Map,
    f: &mut Formatter<'_>,
) -> std::fmt::Result {
    for (local, place) in map.locals.iter_enumerated() {
        if let Some(place) = place {
            debug_with_context_rec(*place, &format!("{local:?}"), new, old, map, f)?;
        }
    }
    Ok(())
}