summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_mir_transform/src/const_prop_lint.rs
blob: a23ba9c4aa9fd604c18f26b23b8ab92fb8d3e907 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
//! Propagates constants for early reporting of statically known
//! assertion failures

use std::fmt::Debug;

use either::Left;

use rustc_const_eval::interpret::Immediate;
use rustc_const_eval::interpret::{
    InterpCx, InterpResult, MemoryKind, OpTy, Scalar, StackPopCleanup,
};
use rustc_const_eval::ReportErrorExt;
use rustc_hir::def::DefKind;
use rustc_hir::HirId;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::visit::Visitor;
use rustc_middle::mir::*;
use rustc_middle::ty::layout::{LayoutError, LayoutOf, LayoutOfHelpers, TyAndLayout};
use rustc_middle::ty::GenericArgs;
use rustc_middle::ty::{
    self, ConstInt, Instance, ParamEnv, ScalarInt, Ty, TyCtxt, TypeVisitableExt,
};
use rustc_span::Span;
use rustc_target::abi::{HasDataLayout, Size, TargetDataLayout};

use crate::const_prop::CanConstProp;
use crate::const_prop::ConstPropMachine;
use crate::const_prop::ConstPropMode;
use crate::errors::AssertLint;
use crate::MirLint;

/// The maximum number of bytes that we'll allocate space for a local or the return value.
/// Needed for #66397, because otherwise we eval into large places and that can cause OOM or just
/// Severely regress performance.
const MAX_ALLOC_LIMIT: u64 = 1024;

pub struct ConstPropLint;

impl<'tcx> MirLint<'tcx> for ConstPropLint {
    fn run_lint(&self, tcx: TyCtxt<'tcx>, body: &Body<'tcx>) {
        if body.tainted_by_errors.is_some() {
            return;
        }

        // will be evaluated by miri and produce its errors there
        if body.source.promoted.is_some() {
            return;
        }

        let def_id = body.source.def_id().expect_local();
        let def_kind = tcx.def_kind(def_id);
        let is_fn_like = def_kind.is_fn_like();
        let is_assoc_const = def_kind == DefKind::AssocConst;

        // Only run const prop on functions, methods, closures and associated constants
        if !is_fn_like && !is_assoc_const {
            // skip anon_const/statics/consts because they'll be evaluated by miri anyway
            trace!("ConstPropLint skipped for {:?}", def_id);
            return;
        }

        // FIXME(welseywiser) const prop doesn't work on coroutines because of query cycles
        // computing their layout.
        if let DefKind::Coroutine = def_kind {
            trace!("ConstPropLint skipped for coroutine {:?}", def_id);
            return;
        }

        trace!("ConstPropLint starting for {:?}", def_id);

        // FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
        // constants, instead of just checking for const-folding succeeding.
        // That would require a uniform one-def no-mutation analysis
        // and RPO (or recursing when needing the value of a local).
        let mut linter = ConstPropagator::new(body, tcx);
        linter.visit_body(body);

        trace!("ConstPropLint done for {:?}", def_id);
    }
}

/// Finds optimization opportunities on the MIR.
struct ConstPropagator<'mir, 'tcx> {
    ecx: InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>,
    tcx: TyCtxt<'tcx>,
    param_env: ParamEnv<'tcx>,
    worklist: Vec<BasicBlock>,
    visited_blocks: BitSet<BasicBlock>,
}

impl<'tcx> LayoutOfHelpers<'tcx> for ConstPropagator<'_, 'tcx> {
    type LayoutOfResult = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;

    #[inline]
    fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> {
        err
    }
}

impl HasDataLayout for ConstPropagator<'_, '_> {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.tcx.data_layout
    }
}

impl<'tcx> ty::layout::HasTyCtxt<'tcx> for ConstPropagator<'_, 'tcx> {
    #[inline]
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }
}

impl<'tcx> ty::layout::HasParamEnv<'tcx> for ConstPropagator<'_, 'tcx> {
    #[inline]
    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.param_env
    }
}

impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> {
    fn new(body: &'mir Body<'tcx>, tcx: TyCtxt<'tcx>) -> ConstPropagator<'mir, 'tcx> {
        let def_id = body.source.def_id();
        let args = &GenericArgs::identity_for_item(tcx, def_id);
        let param_env = tcx.param_env_reveal_all_normalized(def_id);

        let can_const_prop = CanConstProp::check(tcx, param_env, body);
        let mut ecx = InterpCx::new(
            tcx,
            tcx.def_span(def_id),
            param_env,
            ConstPropMachine::new(can_const_prop),
        );

        let ret_layout = ecx
            .layout_of(body.bound_return_ty().instantiate(tcx, args))
            .ok()
            // Don't bother allocating memory for large values.
            // I don't know how return types can seem to be unsized but this happens in the
            // `type/type-unsatisfiable.rs` test.
            .filter(|ret_layout| {
                ret_layout.is_sized() && ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT)
            })
            .unwrap_or_else(|| ecx.layout_of(tcx.types.unit).unwrap());

        let ret = ecx
            .allocate(ret_layout, MemoryKind::Stack)
            .expect("couldn't perform small allocation")
            .into();

        ecx.push_stack_frame(
            Instance::new(def_id, args),
            body,
            &ret,
            StackPopCleanup::Root { cleanup: false },
        )
        .expect("failed to push initial stack frame");

        for local in body.local_decls.indices() {
            // Mark everything initially live.
            // This is somewhat dicey since some of them might be unsized and it is incoherent to
            // mark those as live... We rely on `local_to_place`/`local_to_op` in the interpreter
            // stopping us before those unsized immediates can cause issues deeper in the
            // interpreter.
            ecx.frame_mut().locals[local].make_live_uninit();
        }

        ConstPropagator {
            ecx,
            tcx,
            param_env,
            worklist: vec![START_BLOCK],
            visited_blocks: BitSet::new_empty(body.basic_blocks.len()),
        }
    }

    fn body(&self) -> &'mir Body<'tcx> {
        self.ecx.frame().body
    }

    fn local_decls(&self) -> &'mir LocalDecls<'tcx> {
        &self.body().local_decls
    }

    fn get_const(&self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
        let op = match self.ecx.eval_place_to_op(place, None) {
            Ok(op) => {
                if op
                    .as_mplace_or_imm()
                    .right()
                    .is_some_and(|imm| matches!(*imm, Immediate::Uninit))
                {
                    // Make sure nobody accidentally uses this value.
                    return None;
                }
                op
            }
            Err(e) => {
                trace!("get_const failed: {:?}", e.into_kind().debug());
                return None;
            }
        };

        // Try to read the local as an immediate so that if it is representable as a scalar, we can
        // handle it as such, but otherwise, just return the value as is.
        Some(match self.ecx.read_immediate_raw(&op) {
            Ok(Left(imm)) => imm.into(),
            _ => op,
        })
    }

    /// Remove `local` from the pool of `Locals`. Allows writing to them,
    /// but not reading from them anymore.
    fn remove_const(ecx: &mut InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, local: Local) {
        ecx.frame_mut().locals[local].make_live_uninit();
        ecx.machine.written_only_inside_own_block_locals.remove(&local);
    }

    fn lint_root(&self, source_info: SourceInfo) -> Option<HirId> {
        source_info.scope.lint_root(&self.body().source_scopes)
    }

    fn use_ecx<F, T>(&mut self, location: Location, f: F) -> Option<T>
    where
        F: FnOnce(&mut Self) -> InterpResult<'tcx, T>,
    {
        // Overwrite the PC -- whatever the interpreter does to it does not make any sense anyway.
        self.ecx.frame_mut().loc = Left(location);
        match f(self) {
            Ok(val) => Some(val),
            Err(error) => {
                trace!("InterpCx operation failed: {:?}", error);
                // Some errors shouldn't come up because creating them causes
                // an allocation, which we should avoid. When that happens,
                // dedicated error variants should be introduced instead.
                assert!(
                    !error.kind().formatted_string(),
                    "const-prop encountered formatting error: {}",
                    self.ecx.format_error(error),
                );
                None
            }
        }
    }

    /// Returns the value, if any, of evaluating `c`.
    fn eval_constant(&mut self, c: &ConstOperand<'tcx>, location: Location) -> Option<OpTy<'tcx>> {
        // FIXME we need to revisit this for #67176
        if c.has_param() {
            return None;
        }

        // Normalization needed b/c const prop lint runs in
        // `mir_drops_elaborated_and_const_checked`, which happens before
        // optimized MIR. Only after optimizing the MIR can we guarantee
        // that the `RevealAll` pass has happened and that the body's consts
        // are normalized, so any call to resolve before that needs to be
        // manually normalized.
        let val = self.tcx.try_normalize_erasing_regions(self.param_env, c.const_).ok()?;

        self.use_ecx(location, |this| this.ecx.eval_mir_constant(&val, Some(c.span), None))
    }

    /// Returns the value, if any, of evaluating `place`.
    fn eval_place(&mut self, place: Place<'tcx>, location: Location) -> Option<OpTy<'tcx>> {
        trace!("eval_place(place={:?})", place);
        self.use_ecx(location, |this| this.ecx.eval_place_to_op(place, None))
    }

    /// Returns the value, if any, of evaluating `op`. Calls upon `eval_constant`
    /// or `eval_place`, depending on the variant of `Operand` used.
    fn eval_operand(&mut self, op: &Operand<'tcx>, location: Location) -> Option<OpTy<'tcx>> {
        match *op {
            Operand::Constant(ref c) => self.eval_constant(c, location),
            Operand::Move(place) | Operand::Copy(place) => self.eval_place(place, location),
        }
    }

    fn report_assert_as_lint(&self, source_info: &SourceInfo, lint: AssertLint<impl Debug>) {
        if let Some(lint_root) = self.lint_root(*source_info) {
            self.tcx.emit_spanned_lint(lint.lint(), lint_root, source_info.span, lint);
        }
    }

    fn check_unary_op(&mut self, op: UnOp, arg: &Operand<'tcx>, location: Location) -> Option<()> {
        if let (val, true) = self.use_ecx(location, |this| {
            let val = this.ecx.read_immediate(&this.ecx.eval_operand(arg, None)?)?;
            let (_res, overflow) = this.ecx.overflowing_unary_op(op, &val)?;
            Ok((val, overflow))
        })? {
            // `AssertKind` only has an `OverflowNeg` variant, so make sure that is
            // appropriate to use.
            assert_eq!(op, UnOp::Neg, "Neg is the only UnOp that can overflow");
            let source_info = self.body().source_info(location);
            self.report_assert_as_lint(
                source_info,
                AssertLint::ArithmeticOverflow(
                    source_info.span,
                    AssertKind::OverflowNeg(val.to_const_int()),
                ),
            );
            return None;
        }

        Some(())
    }

    fn check_binary_op(
        &mut self,
        op: BinOp,
        left: &Operand<'tcx>,
        right: &Operand<'tcx>,
        location: Location,
    ) -> Option<()> {
        let r = self.use_ecx(location, |this| {
            this.ecx.read_immediate(&this.ecx.eval_operand(right, None)?)
        });
        let l = self
            .use_ecx(location, |this| this.ecx.read_immediate(&this.ecx.eval_operand(left, None)?));
        // Check for exceeding shifts *even if* we cannot evaluate the LHS.
        if matches!(op, BinOp::Shr | BinOp::Shl) {
            let r = r.clone()?;
            // We need the type of the LHS. We cannot use `place_layout` as that is the type
            // of the result, which for checked binops is not the same!
            let left_ty = left.ty(self.local_decls(), self.tcx);
            let left_size = self.ecx.layout_of(left_ty).ok()?.size;
            let right_size = r.layout.size;
            let r_bits = r.to_scalar().to_bits(right_size).ok();
            if r_bits.is_some_and(|b| b >= left_size.bits() as u128) {
                debug!("check_binary_op: reporting assert for {:?}", location);
                let source_info = self.body().source_info(location);
                let panic = AssertKind::Overflow(
                    op,
                    match l {
                        Some(l) => l.to_const_int(),
                        // Invent a dummy value, the diagnostic ignores it anyway
                        None => ConstInt::new(
                            ScalarInt::try_from_uint(1_u8, left_size).unwrap(),
                            left_ty.is_signed(),
                            left_ty.is_ptr_sized_integral(),
                        ),
                    },
                    r.to_const_int(),
                );
                self.report_assert_as_lint(
                    source_info,
                    AssertLint::ArithmeticOverflow(source_info.span, panic),
                );
                return None;
            }
        }

        if let (Some(l), Some(r)) = (l, r) {
            // The remaining operators are handled through `overflowing_binary_op`.
            if self.use_ecx(location, |this| {
                let (_res, overflow) = this.ecx.overflowing_binary_op(op, &l, &r)?;
                Ok(overflow)
            })? {
                let source_info = self.body().source_info(location);
                self.report_assert_as_lint(
                    source_info,
                    AssertLint::ArithmeticOverflow(
                        source_info.span,
                        AssertKind::Overflow(op, l.to_const_int(), r.to_const_int()),
                    ),
                );
                return None;
            }
        }
        Some(())
    }

    fn check_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) -> Option<()> {
        // Perform any special handling for specific Rvalue types.
        // Generally, checks here fall into one of two categories:
        //   1. Additional checking to provide useful lints to the user
        //        - In this case, we will do some validation and then fall through to the
        //          end of the function which evals the assignment.
        //   2. Working around bugs in other parts of the compiler
        //        - In this case, we'll return `None` from this function to stop evaluation.
        match rvalue {
            // Additional checking: give lints to the user if an overflow would occur.
            // We do this here and not in the `Assert` terminator as that terminator is
            // only sometimes emitted (overflow checks can be disabled), but we want to always
            // lint.
            Rvalue::UnaryOp(op, arg) => {
                trace!("checking UnaryOp(op = {:?}, arg = {:?})", op, arg);
                self.check_unary_op(*op, arg, location)?;
            }
            Rvalue::BinaryOp(op, box (left, right)) => {
                trace!("checking BinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right);
                self.check_binary_op(*op, left, right, location)?;
            }
            Rvalue::CheckedBinaryOp(op, box (left, right)) => {
                trace!(
                    "checking CheckedBinaryOp(op = {:?}, left = {:?}, right = {:?})",
                    op,
                    left,
                    right
                );
                self.check_binary_op(*op, left, right, location)?;
            }

            // Do not try creating references (#67862)
            Rvalue::AddressOf(_, place) | Rvalue::Ref(_, _, place) => {
                trace!("skipping AddressOf | Ref for {:?}", place);

                // This may be creating mutable references or immutable references to cells.
                // If that happens, the pointed to value could be mutated via that reference.
                // Since we aren't tracking references, the const propagator loses track of what
                // value the local has right now.
                // Thus, all locals that have their reference taken
                // must not take part in propagation.
                Self::remove_const(&mut self.ecx, place.local);

                return None;
            }
            Rvalue::ThreadLocalRef(def_id) => {
                trace!("skipping ThreadLocalRef({:?})", def_id);

                return None;
            }

            // There's no other checking to do at this time.
            Rvalue::Aggregate(..)
            | Rvalue::Use(..)
            | Rvalue::CopyForDeref(..)
            | Rvalue::Repeat(..)
            | Rvalue::Len(..)
            | Rvalue::Cast(..)
            | Rvalue::ShallowInitBox(..)
            | Rvalue::Discriminant(..)
            | Rvalue::NullaryOp(..) => {}
        }

        // FIXME we need to revisit this for #67176
        if rvalue.has_param() {
            return None;
        }
        if !rvalue.ty(self.local_decls(), self.tcx).is_sized(self.tcx, self.param_env) {
            // the interpreter doesn't support unsized locals (only unsized arguments),
            // but rustc does (in a kinda broken way), so we have to skip them here
            return None;
        }

        Some(())
    }

    fn check_assertion(
        &mut self,
        expected: bool,
        msg: &AssertKind<Operand<'tcx>>,
        cond: &Operand<'tcx>,
        location: Location,
    ) -> Option<!> {
        let value = &self.eval_operand(&cond, location)?;
        trace!("assertion on {:?} should be {:?}", value, expected);

        let expected = Scalar::from_bool(expected);
        let value_const = self.use_ecx(location, |this| this.ecx.read_scalar(value))?;

        if expected != value_const {
            // Poison all places this operand references so that further code
            // doesn't use the invalid value
            if let Some(place) = cond.place() {
                Self::remove_const(&mut self.ecx, place.local);
            }

            enum DbgVal<T> {
                Val(T),
                Underscore,
            }
            impl<T: std::fmt::Debug> std::fmt::Debug for DbgVal<T> {
                fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                    match self {
                        Self::Val(val) => val.fmt(fmt),
                        Self::Underscore => fmt.write_str("_"),
                    }
                }
            }
            let mut eval_to_int = |op| {
                // This can be `None` if the lhs wasn't const propagated and we just
                // triggered the assert on the value of the rhs.
                self.eval_operand(op, location)
                    .and_then(|op| self.ecx.read_immediate(&op).ok())
                    .map_or(DbgVal::Underscore, |op| DbgVal::Val(op.to_const_int()))
            };
            let msg = match msg {
                AssertKind::DivisionByZero(op) => AssertKind::DivisionByZero(eval_to_int(op)),
                AssertKind::RemainderByZero(op) => AssertKind::RemainderByZero(eval_to_int(op)),
                AssertKind::Overflow(bin_op @ (BinOp::Div | BinOp::Rem), op1, op2) => {
                    // Division overflow is *UB* in the MIR, and different than the
                    // other overflow checks.
                    AssertKind::Overflow(*bin_op, eval_to_int(op1), eval_to_int(op2))
                }
                AssertKind::BoundsCheck { ref len, ref index } => {
                    let len = eval_to_int(len);
                    let index = eval_to_int(index);
                    AssertKind::BoundsCheck { len, index }
                }
                // Remaining overflow errors are already covered by checks on the binary operators.
                AssertKind::Overflow(..) | AssertKind::OverflowNeg(_) => return None,
                // Need proper const propagator for these.
                _ => return None,
            };
            let source_info = self.body().source_info(location);
            self.report_assert_as_lint(
                source_info,
                AssertLint::UnconditionalPanic(source_info.span, msg),
            );
        }

        None
    }

    fn ensure_not_propagated(&self, local: Local) {
        if cfg!(debug_assertions) {
            assert!(
                self.get_const(local.into()).is_none()
                    || self
                        .layout_of(self.local_decls()[local].ty)
                        .map_or(true, |layout| layout.is_zst()),
                "failed to remove values for `{local:?}`, value={:?}",
                self.get_const(local.into()),
            )
        }
    }
}

impl<'tcx> Visitor<'tcx> for ConstPropagator<'_, 'tcx> {
    fn visit_body(&mut self, body: &Body<'tcx>) {
        while let Some(bb) = self.worklist.pop() {
            if !self.visited_blocks.insert(bb) {
                continue;
            }

            let data = &body.basic_blocks[bb];
            self.visit_basic_block_data(bb, data);
        }
    }

    fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
        self.super_operand(operand, location);
    }

    fn visit_constant(&mut self, constant: &ConstOperand<'tcx>, location: Location) {
        trace!("visit_constant: {:?}", constant);
        self.super_constant(constant, location);
        self.eval_constant(constant, location);
    }

    fn visit_assign(&mut self, place: &Place<'tcx>, rvalue: &Rvalue<'tcx>, location: Location) {
        self.super_assign(place, rvalue, location);

        let Some(()) = self.check_rvalue(rvalue, location) else { return };

        match self.ecx.machine.can_const_prop[place.local] {
            // Do nothing if the place is indirect.
            _ if place.is_indirect() => {}
            ConstPropMode::NoPropagation => self.ensure_not_propagated(place.local),
            ConstPropMode::OnlyInsideOwnBlock | ConstPropMode::FullConstProp => {
                if self
                    .use_ecx(location, |this| this.ecx.eval_rvalue_into_place(rvalue, *place))
                    .is_none()
                {
                    // Const prop failed, so erase the destination, ensuring that whatever happens
                    // from here on, does not know about the previous value.
                    // This is important in case we have
                    // ```rust
                    // let mut x = 42;
                    // x = SOME_MUTABLE_STATIC;
                    // // x must now be uninit
                    // ```
                    // FIXME: we overzealously erase the entire local, because that's easier to
                    // implement.
                    trace!(
                        "propagation into {:?} failed.
                        Nuking the entire site from orbit, it's the only way to be sure",
                        place,
                    );
                    Self::remove_const(&mut self.ecx, place.local);
                }
            }
        }
    }

    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
        trace!("visit_statement: {:?}", statement);

        // We want to evaluate operands before any change to the assigned-to value,
        // so we recurse first.
        self.super_statement(statement, location);

        match statement.kind {
            StatementKind::SetDiscriminant { ref place, .. } => {
                match self.ecx.machine.can_const_prop[place.local] {
                    // Do nothing if the place is indirect.
                    _ if place.is_indirect() => {}
                    ConstPropMode::NoPropagation => self.ensure_not_propagated(place.local),
                    ConstPropMode::FullConstProp | ConstPropMode::OnlyInsideOwnBlock => {
                        if self.use_ecx(location, |this| this.ecx.statement(statement)).is_some() {
                            trace!("propped discriminant into {:?}", place);
                        } else {
                            Self::remove_const(&mut self.ecx, place.local);
                        }
                    }
                }
            }
            StatementKind::StorageLive(local) => {
                let frame = self.ecx.frame_mut();
                frame.locals[local].make_live_uninit();
            }
            StatementKind::StorageDead(local) => {
                let frame = self.ecx.frame_mut();
                // We don't actually track liveness, so the local remains live. But forget its value.
                frame.locals[local].make_live_uninit();
            }
            _ => {}
        }
    }

    fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
        self.super_terminator(terminator, location);
        match &terminator.kind {
            TerminatorKind::Assert { expected, ref msg, ref cond, .. } => {
                self.check_assertion(*expected, msg, cond, location);
            }
            TerminatorKind::SwitchInt { ref discr, ref targets } => {
                if let Some(ref value) = self.eval_operand(&discr, location)
                    && let Some(value_const) =
                        self.use_ecx(location, |this| this.ecx.read_scalar(value))
                    && let Ok(constant) = value_const.try_to_int()
                    && let Ok(constant) = constant.to_bits(constant.size())
                {
                    // We managed to evaluate the discriminant, so we know we only need to visit
                    // one target.
                    let target = targets.target_for_value(constant);
                    self.worklist.push(target);
                    return;
                }
                // We failed to evaluate the discriminant, fallback to visiting all successors.
            }
            // None of these have Operands to const-propagate.
            TerminatorKind::Goto { .. }
            | TerminatorKind::UnwindResume
            | TerminatorKind::UnwindTerminate(_)
            | TerminatorKind::Return
            | TerminatorKind::Unreachable
            | TerminatorKind::Drop { .. }
            | TerminatorKind::Yield { .. }
            | TerminatorKind::CoroutineDrop
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::FalseUnwind { .. }
            | TerminatorKind::Call { .. }
            | TerminatorKind::InlineAsm { .. } => {}
        }

        self.worklist.extend(terminator.successors());
    }

    fn visit_basic_block_data(&mut self, block: BasicBlock, data: &BasicBlockData<'tcx>) {
        self.super_basic_block_data(block, data);

        // We remove all Locals which are restricted in propagation to their containing blocks and
        // which were modified in the current block.
        // Take it out of the ecx so we can get a mutable reference to the ecx for `remove_const`.
        let mut written_only_inside_own_block_locals =
            std::mem::take(&mut self.ecx.machine.written_only_inside_own_block_locals);

        // This loop can get very hot for some bodies: it check each local in each bb.
        // To avoid this quadratic behaviour, we only clear the locals that were modified inside
        // the current block.
        for local in written_only_inside_own_block_locals.drain() {
            debug_assert_eq!(
                self.ecx.machine.can_const_prop[local],
                ConstPropMode::OnlyInsideOwnBlock
            );
            Self::remove_const(&mut self.ecx, local);
        }
        self.ecx.machine.written_only_inside_own_block_locals =
            written_only_inside_own_block_locals;

        if cfg!(debug_assertions) {
            for (local, &mode) in self.ecx.machine.can_const_prop.iter_enumerated() {
                match mode {
                    ConstPropMode::FullConstProp => {}
                    ConstPropMode::NoPropagation | ConstPropMode::OnlyInsideOwnBlock => {
                        self.ensure_not_propagated(local);
                    }
                }
            }
        }
    }
}