summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_mir_transform/src/coverage/spans/from_mir.rs
blob: a9c4ea33d0e823dda0d5e8cc6faee45f02b40be1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
use rustc_data_structures::captures::Captures;
use rustc_middle::mir::{
    self, AggregateKind, FakeReadCause, Rvalue, Statement, StatementKind, Terminator,
    TerminatorKind,
};
use rustc_span::Span;

use crate::coverage::graph::{BasicCoverageBlock, BasicCoverageBlockData, CoverageGraph};
use crate::coverage::spans::CoverageSpan;
use crate::coverage::ExtractedHirInfo;

pub(super) fn mir_to_initial_sorted_coverage_spans(
    mir_body: &mir::Body<'_>,
    hir_info: &ExtractedHirInfo,
    basic_coverage_blocks: &CoverageGraph,
) -> Vec<CoverageSpan> {
    let &ExtractedHirInfo { is_async_fn, fn_sig_span, body_span, .. } = hir_info;
    if is_async_fn {
        // An async function desugars into a function that returns a future,
        // with the user code wrapped in a closure. Any spans in the desugared
        // outer function will be unhelpful, so just produce a single span
        // associating the function signature with its entry BCB.
        return vec![CoverageSpan::for_fn_sig(fn_sig_span)];
    }

    let mut initial_spans = Vec::with_capacity(mir_body.basic_blocks.len() * 2);
    for (bcb, bcb_data) in basic_coverage_blocks.iter_enumerated() {
        initial_spans.extend(bcb_to_initial_coverage_spans(mir_body, body_span, bcb, bcb_data));
    }

    if initial_spans.is_empty() {
        // This can happen if, for example, the function is unreachable (contains only a
        // `BasicBlock`(s) with an `Unreachable` terminator).
        return initial_spans;
    }

    initial_spans.push(CoverageSpan::for_fn_sig(fn_sig_span));

    initial_spans.sort_by(|a, b| {
        // First sort by span start.
        Ord::cmp(&a.span.lo(), &b.span.lo())
            // If span starts are the same, sort by span end in reverse order.
            // This ensures that if spans A and B are adjacent in the list,
            // and they overlap but are not equal, then either:
            // - Span A extends further left, or
            // - Both have the same start and span A extends further right
            .then_with(|| Ord::cmp(&a.span.hi(), &b.span.hi()).reverse())
            // If both spans are equal, sort the BCBs in dominator order,
            // so that dominating BCBs come before other BCBs they dominate.
            .then_with(|| basic_coverage_blocks.cmp_in_dominator_order(a.bcb, b.bcb))
            // If two spans are otherwise identical, put closure spans first,
            // as this seems to be what the refinement step expects.
            .then_with(|| Ord::cmp(&a.is_closure, &b.is_closure).reverse())
    });

    initial_spans
}

// Generate a set of `CoverageSpan`s from the filtered set of `Statement`s and `Terminator`s of
// the `BasicBlock`(s) in the given `BasicCoverageBlockData`. One `CoverageSpan` is generated
// for each `Statement` and `Terminator`. (Note that subsequent stages of coverage analysis will
// merge some `CoverageSpan`s, at which point a `CoverageSpan` may represent multiple
// `Statement`s and/or `Terminator`s.)
fn bcb_to_initial_coverage_spans<'a, 'tcx>(
    mir_body: &'a mir::Body<'tcx>,
    body_span: Span,
    bcb: BasicCoverageBlock,
    bcb_data: &'a BasicCoverageBlockData,
) -> impl Iterator<Item = CoverageSpan> + Captures<'a> + Captures<'tcx> {
    bcb_data.basic_blocks.iter().flat_map(move |&bb| {
        let data = &mir_body[bb];

        let statement_spans = data.statements.iter().filter_map(move |statement| {
            let expn_span = filtered_statement_span(statement)?;
            let span = unexpand_into_body_span(expn_span, body_span)?;

            Some(CoverageSpan::new(span, expn_span, bcb, is_closure(statement)))
        });

        let terminator_span = Some(data.terminator()).into_iter().filter_map(move |terminator| {
            let expn_span = filtered_terminator_span(terminator)?;
            let span = unexpand_into_body_span(expn_span, body_span)?;

            Some(CoverageSpan::new(span, expn_span, bcb, false))
        });

        statement_spans.chain(terminator_span)
    })
}

fn is_closure(statement: &Statement<'_>) -> bool {
    match statement.kind {
        StatementKind::Assign(box (_, Rvalue::Aggregate(box ref agg_kind, _))) => match agg_kind {
            AggregateKind::Closure(_, _) | AggregateKind::Coroutine(_, _, _) => true,
            _ => false,
        },
        _ => false,
    }
}

/// If the MIR `Statement` has a span contributive to computing coverage spans,
/// return it; otherwise return `None`.
fn filtered_statement_span(statement: &Statement<'_>) -> Option<Span> {
    use mir::coverage::CoverageKind;

    match statement.kind {
        // These statements have spans that are often outside the scope of the executed source code
        // for their parent `BasicBlock`.
        StatementKind::StorageLive(_)
        | StatementKind::StorageDead(_)
        // Ignore `ConstEvalCounter`s
        | StatementKind::ConstEvalCounter
        // Ignore `Nop`s
        | StatementKind::Nop => None,

        // FIXME(#78546): MIR InstrumentCoverage - Can the source_info.span for `FakeRead`
        // statements be more consistent?
        //
        // FakeReadCause::ForGuardBinding, in this example:
        //     match somenum {
        //         x if x < 1 => { ... }
        //     }...
        // The BasicBlock within the match arm code included one of these statements, but the span
        // for it covered the `1` in this source. The actual statements have nothing to do with that
        // source span:
        //     FakeRead(ForGuardBinding, _4);
        // where `_4` is:
        //     _4 = &_1; (at the span for the first `x`)
        // and `_1` is the `Place` for `somenum`.
        //
        // If and when the Issue is resolved, remove this special case match pattern:
        StatementKind::FakeRead(box (FakeReadCause::ForGuardBinding, _)) => None,

        // Retain spans from most other statements.
        StatementKind::FakeRead(box (_, _)) // Not including `ForGuardBinding`
        | StatementKind::Intrinsic(..)
        | StatementKind::Coverage(box mir::Coverage {
            // The purpose of `SpanMarker` is to be matched and accepted here.
            kind: CoverageKind::SpanMarker
        })
        | StatementKind::Assign(_)
        | StatementKind::SetDiscriminant { .. }
        | StatementKind::Deinit(..)
        | StatementKind::Retag(_, _)
        | StatementKind::PlaceMention(..)
        | StatementKind::AscribeUserType(_, _) => {
            Some(statement.source_info.span)
        }

        StatementKind::Coverage(box mir::Coverage {
            // These coverage statements should not exist prior to coverage instrumentation.
            kind: CoverageKind::CounterIncrement { .. } | CoverageKind::ExpressionUsed { .. }
        }) => bug!("Unexpected coverage statement found during coverage instrumentation: {statement:?}"),
    }
}

/// If the MIR `Terminator` has a span contributive to computing coverage spans,
/// return it; otherwise return `None`.
fn filtered_terminator_span(terminator: &Terminator<'_>) -> Option<Span> {
    match terminator.kind {
        // These terminators have spans that don't positively contribute to computing a reasonable
        // span of actually executed source code. (For example, SwitchInt terminators extracted from
        // an `if condition { block }` has a span that includes the executed block, if true,
        // but for coverage, the code region executed, up to *and* through the SwitchInt,
        // actually stops before the if's block.)
        TerminatorKind::Unreachable // Unreachable blocks are not connected to the MIR CFG
        | TerminatorKind::Assert { .. }
        | TerminatorKind::Drop { .. }
        | TerminatorKind::SwitchInt { .. }
        // For `FalseEdge`, only the `real` branch is taken, so it is similar to a `Goto`.
        | TerminatorKind::FalseEdge { .. }
        | TerminatorKind::Goto { .. } => None,

        // Call `func` operand can have a more specific span when part of a chain of calls
        | TerminatorKind::Call { ref func, .. } => {
            let mut span = terminator.source_info.span;
            if let mir::Operand::Constant(box constant) = func {
                if constant.span.lo() > span.lo() {
                    span = span.with_lo(constant.span.lo());
                }
            }
            Some(span)
        }

        // Retain spans from all other terminators
        TerminatorKind::UnwindResume
        | TerminatorKind::UnwindTerminate(_)
        | TerminatorKind::Return
        | TerminatorKind::Yield { .. }
        | TerminatorKind::CoroutineDrop
        | TerminatorKind::FalseUnwind { .. }
        | TerminatorKind::InlineAsm { .. } => {
            Some(terminator.source_info.span)
        }
    }
}

/// Returns an extrapolated span (pre-expansion[^1]) corresponding to a range
/// within the function's body source. This span is guaranteed to be contained
/// within, or equal to, the `body_span`. If the extrapolated span is not
/// contained within the `body_span`, `None` is returned.
///
/// [^1]Expansions result from Rust syntax including macros, syntactic sugar,
/// etc.).
#[inline]
fn unexpand_into_body_span(span: Span, body_span: Span) -> Option<Span> {
    use rustc_span::source_map::original_sp;

    // FIXME(#118525): Consider switching from `original_sp` to `Span::find_ancestor_inside`,
    // which is similar but gives slightly different results in some edge cases.
    let original_span = original_sp(span, body_span).with_ctxt(body_span.ctxt());
    body_span.contains(original_span).then_some(original_span)
}