1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
|
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
#![feature(associated_type_defaults)]
#![feature(rustc_private)]
#![feature(try_blocks)]
#![feature(let_chains)]
#![recursion_limit = "256"]
#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]
#[macro_use]
extern crate tracing;
mod errors;
use rustc_ast::MacroDef;
use rustc_attr as attr;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::intern::Interned;
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
use rustc_fluent_macro::fluent_messages;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID};
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::{AssocItemKind, HirIdSet, ItemId, Node, PatKind};
use rustc_middle::bug;
use rustc_middle::hir::nested_filter;
use rustc_middle::middle::privacy::{EffectiveVisibilities, EffectiveVisibility, Level};
use rustc_middle::query::Providers;
use rustc_middle::span_bug;
use rustc_middle::ty::subst::InternalSubsts;
use rustc_middle::ty::{self, Const, GenericParamDefKind};
use rustc_middle::ty::{TraitRef, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor};
use rustc_session::lint;
use rustc_span::hygiene::Transparency;
use rustc_span::symbol::{kw, sym, Ident};
use rustc_span::Span;
use std::marker::PhantomData;
use std::ops::ControlFlow;
use std::{fmt, mem};
use errors::{
FieldIsPrivate, FieldIsPrivateLabel, FromPrivateDependencyInPublicInterface, InPublicInterface,
InPublicInterfaceTraits, ItemIsPrivate, PrivateInPublicLint, ReportEffectiveVisibility,
UnnamedItemIsPrivate,
};
fluent_messages! { "../messages.ftl" }
////////////////////////////////////////////////////////////////////////////////
/// Generic infrastructure used to implement specific visitors below.
////////////////////////////////////////////////////////////////////////////////
/// Implemented to visit all `DefId`s in a type.
/// Visiting `DefId`s is useful because visibilities and reachabilities are attached to them.
/// The idea is to visit "all components of a type", as documented in
/// <https://github.com/rust-lang/rfcs/blob/master/text/2145-type-privacy.md#how-to-determine-visibility-of-a-type>.
/// The default type visitor (`TypeVisitor`) does most of the job, but it has some shortcomings.
/// First, it doesn't have overridable `fn visit_trait_ref`, so we have to catch trait `DefId`s
/// manually. Second, it doesn't visit some type components like signatures of fn types, or traits
/// in `impl Trait`, see individual comments in `DefIdVisitorSkeleton::visit_ty`.
trait DefIdVisitor<'tcx> {
type BreakTy = ();
fn tcx(&self) -> TyCtxt<'tcx>;
fn shallow(&self) -> bool {
false
}
fn skip_assoc_tys(&self) -> bool {
false
}
fn visit_def_id(
&mut self,
def_id: DefId,
kind: &str,
descr: &dyn fmt::Display,
) -> ControlFlow<Self::BreakTy>;
/// Not overridden, but used to actually visit types and traits.
fn skeleton(&mut self) -> DefIdVisitorSkeleton<'_, 'tcx, Self> {
DefIdVisitorSkeleton {
def_id_visitor: self,
visited_opaque_tys: Default::default(),
dummy: Default::default(),
}
}
fn visit(
&mut self,
ty_fragment: impl TypeVisitable<TyCtxt<'tcx>>,
) -> ControlFlow<Self::BreakTy> {
ty_fragment.visit_with(&mut self.skeleton())
}
fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow<Self::BreakTy> {
self.skeleton().visit_trait(trait_ref)
}
fn visit_projection_ty(&mut self, projection: ty::AliasTy<'tcx>) -> ControlFlow<Self::BreakTy> {
self.skeleton().visit_projection_ty(projection)
}
fn visit_predicates(
&mut self,
predicates: ty::GenericPredicates<'tcx>,
) -> ControlFlow<Self::BreakTy> {
self.skeleton().visit_predicates(predicates)
}
}
struct DefIdVisitorSkeleton<'v, 'tcx, V: ?Sized> {
def_id_visitor: &'v mut V,
visited_opaque_tys: FxHashSet<DefId>,
dummy: PhantomData<TyCtxt<'tcx>>,
}
impl<'tcx, V> DefIdVisitorSkeleton<'_, 'tcx, V>
where
V: DefIdVisitor<'tcx> + ?Sized,
{
fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow<V::BreakTy> {
let TraitRef { def_id, substs, .. } = trait_ref;
self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref.print_only_trait_path())?;
if self.def_id_visitor.shallow() {
ControlFlow::Continue(())
} else {
substs.visit_with(self)
}
}
fn visit_projection_ty(&mut self, projection: ty::AliasTy<'tcx>) -> ControlFlow<V::BreakTy> {
let tcx = self.def_id_visitor.tcx();
let (trait_ref, assoc_substs) = if tcx.def_kind(projection.def_id)
!= DefKind::ImplTraitPlaceholder
{
projection.trait_ref_and_own_substs(tcx)
} else {
// HACK(RPITIT): Remove this when RPITITs are lowered to regular assoc tys
let def_id = tcx.impl_trait_in_trait_parent_fn(projection.def_id);
let trait_generics = tcx.generics_of(def_id);
(
ty::TraitRef::new(tcx, def_id, projection.substs.truncate_to(tcx, trait_generics)),
&projection.substs[trait_generics.count()..],
)
};
self.visit_trait(trait_ref)?;
if self.def_id_visitor.shallow() {
ControlFlow::Continue(())
} else {
assoc_substs.iter().try_for_each(|subst| subst.visit_with(self))
}
}
fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> ControlFlow<V::BreakTy> {
match predicate.kind().skip_binder() {
ty::PredicateKind::Clause(ty::Clause::Trait(ty::TraitPredicate {
trait_ref,
constness: _,
polarity: _,
})) => self.visit_trait(trait_ref),
ty::PredicateKind::Clause(ty::Clause::Projection(ty::ProjectionPredicate {
projection_ty,
term,
})) => {
term.visit_with(self)?;
self.visit_projection_ty(projection_ty)
}
ty::PredicateKind::Clause(ty::Clause::TypeOutlives(ty::OutlivesPredicate(
ty,
_region,
))) => ty.visit_with(self),
ty::PredicateKind::Clause(ty::Clause::RegionOutlives(..)) => ControlFlow::Continue(()),
ty::PredicateKind::Clause(ty::Clause::ConstArgHasType(ct, ty)) => {
ct.visit_with(self)?;
ty.visit_with(self)
}
ty::PredicateKind::ConstEvaluatable(ct) => ct.visit_with(self),
ty::PredicateKind::WellFormed(arg) => arg.visit_with(self),
ty::PredicateKind::ObjectSafe(_)
| ty::PredicateKind::ClosureKind(_, _, _)
| ty::PredicateKind::Subtype(_)
| ty::PredicateKind::Coerce(_)
| ty::PredicateKind::ConstEquate(_, _)
| ty::PredicateKind::TypeWellFormedFromEnv(_)
| ty::PredicateKind::Ambiguous
| ty::PredicateKind::AliasRelate(..) => bug!("unexpected predicate: {:?}", predicate),
}
}
fn visit_predicates(
&mut self,
predicates: ty::GenericPredicates<'tcx>,
) -> ControlFlow<V::BreakTy> {
let ty::GenericPredicates { parent: _, predicates } = predicates;
predicates.iter().try_for_each(|&(predicate, _span)| self.visit_predicate(predicate))
}
}
impl<'tcx, V> TypeVisitor<TyCtxt<'tcx>> for DefIdVisitorSkeleton<'_, 'tcx, V>
where
V: DefIdVisitor<'tcx> + ?Sized,
{
type BreakTy = V::BreakTy;
fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<V::BreakTy> {
let tcx = self.def_id_visitor.tcx();
// InternalSubsts are not visited here because they are visited below
// in `super_visit_with`.
match *ty.kind() {
ty::Adt(ty::AdtDef(Interned(&ty::AdtDefData { did: def_id, .. }, _)), ..)
| ty::Foreign(def_id)
| ty::FnDef(def_id, ..)
| ty::Closure(def_id, ..)
| ty::Generator(def_id, ..) => {
self.def_id_visitor.visit_def_id(def_id, "type", &ty)?;
if self.def_id_visitor.shallow() {
return ControlFlow::Continue(());
}
// Default type visitor doesn't visit signatures of fn types.
// Something like `fn() -> Priv {my_func}` is considered a private type even if
// `my_func` is public, so we need to visit signatures.
if let ty::FnDef(..) = ty.kind() {
// FIXME: this should probably use `substs` from `FnDef`
tcx.fn_sig(def_id).subst_identity().visit_with(self)?;
}
// Inherent static methods don't have self type in substs.
// Something like `fn() {my_method}` type of the method
// `impl Pub<Priv> { pub fn my_method() {} }` is considered a private type,
// so we need to visit the self type additionally.
if let Some(assoc_item) = tcx.opt_associated_item(def_id) {
if let Some(impl_def_id) = assoc_item.impl_container(tcx) {
tcx.type_of(impl_def_id).subst_identity().visit_with(self)?;
}
}
}
ty::Alias(ty::Projection, proj) => {
if self.def_id_visitor.skip_assoc_tys() {
// Visitors searching for minimal visibility/reachability want to
// conservatively approximate associated types like `<Type as Trait>::Alias`
// as visible/reachable even if both `Type` and `Trait` are private.
// Ideally, associated types should be substituted in the same way as
// free type aliases, but this isn't done yet.
return ControlFlow::Continue(());
}
// This will also visit substs if necessary, so we don't need to recurse.
return self.visit_projection_ty(proj);
}
ty::Alias(ty::Inherent, data) => {
if self.def_id_visitor.skip_assoc_tys() {
// Visitors searching for minimal visibility/reachability want to
// conservatively approximate associated types like `Type::Alias`
// as visible/reachable even if `Type` is private.
// Ideally, associated types should be substituted in the same way as
// free type aliases, but this isn't done yet.
return ControlFlow::Continue(());
}
self.def_id_visitor.visit_def_id(
data.def_id,
"associated type",
&LazyDefPathStr { def_id: data.def_id, tcx },
)?;
struct LazyDefPathStr<'tcx> {
def_id: DefId,
tcx: TyCtxt<'tcx>,
}
impl<'tcx> fmt::Display for LazyDefPathStr<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.tcx.def_path_str(self.def_id))
}
}
// This will also visit substs if necessary, so we don't need to recurse.
return if self.def_id_visitor.shallow() {
ControlFlow::Continue(())
} else {
data.substs.iter().try_for_each(|subst| subst.visit_with(self))
};
}
ty::Dynamic(predicates, ..) => {
// All traits in the list are considered the "primary" part of the type
// and are visited by shallow visitors.
for predicate in predicates {
let trait_ref = match predicate.skip_binder() {
ty::ExistentialPredicate::Trait(trait_ref) => trait_ref,
ty::ExistentialPredicate::Projection(proj) => proj.trait_ref(tcx),
ty::ExistentialPredicate::AutoTrait(def_id) => {
ty::ExistentialTraitRef { def_id, substs: InternalSubsts::empty() }
}
};
let ty::ExistentialTraitRef { def_id, substs: _ } = trait_ref;
self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref)?;
}
}
ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) => {
// Skip repeated `Opaque`s to avoid infinite recursion.
if self.visited_opaque_tys.insert(def_id) {
// The intent is to treat `impl Trait1 + Trait2` identically to
// `dyn Trait1 + Trait2`. Therefore we ignore def-id of the opaque type itself
// (it either has no visibility, or its visibility is insignificant, like
// visibilities of type aliases) and recurse into bounds instead to go
// through the trait list (default type visitor doesn't visit those traits).
// All traits in the list are considered the "primary" part of the type
// and are visited by shallow visitors.
self.visit_predicates(ty::GenericPredicates {
parent: None,
predicates: tcx.explicit_item_bounds(def_id).skip_binder(),
})?;
}
}
// These types don't have their own def-ids (but may have subcomponents
// with def-ids that should be visited recursively).
ty::Bool
| ty::Char
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..)
| ty::Str
| ty::Never
| ty::Array(..)
| ty::Slice(..)
| ty::Tuple(..)
| ty::RawPtr(..)
| ty::Ref(..)
| ty::FnPtr(..)
| ty::Param(..)
| ty::Bound(..)
| ty::Error(_)
| ty::GeneratorWitness(..)
| ty::GeneratorWitnessMIR(..) => {}
ty::Placeholder(..) | ty::Infer(..) => {
bug!("unexpected type: {:?}", ty)
}
}
if self.def_id_visitor.shallow() {
ControlFlow::Continue(())
} else {
ty.super_visit_with(self)
}
}
fn visit_const(&mut self, c: Const<'tcx>) -> ControlFlow<Self::BreakTy> {
let tcx = self.def_id_visitor.tcx();
tcx.expand_abstract_consts(c).super_visit_with(self)
}
}
fn min(vis1: ty::Visibility, vis2: ty::Visibility, tcx: TyCtxt<'_>) -> ty::Visibility {
if vis1.is_at_least(vis2, tcx) { vis2 } else { vis1 }
}
////////////////////////////////////////////////////////////////////////////////
/// Visitor used to determine impl visibility and reachability.
////////////////////////////////////////////////////////////////////////////////
struct FindMin<'a, 'tcx, VL: VisibilityLike> {
tcx: TyCtxt<'tcx>,
effective_visibilities: &'a EffectiveVisibilities,
min: VL,
}
impl<'a, 'tcx, VL: VisibilityLike> DefIdVisitor<'tcx> for FindMin<'a, 'tcx, VL> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn shallow(&self) -> bool {
VL::SHALLOW
}
fn skip_assoc_tys(&self) -> bool {
true
}
fn visit_def_id(
&mut self,
def_id: DefId,
_kind: &str,
_descr: &dyn fmt::Display,
) -> ControlFlow<Self::BreakTy> {
if let Some(def_id) = def_id.as_local() {
self.min = VL::new_min(self, def_id);
}
ControlFlow::Continue(())
}
}
trait VisibilityLike: Sized {
const MAX: Self;
const SHALLOW: bool = false;
fn new_min(find: &FindMin<'_, '_, Self>, def_id: LocalDefId) -> Self;
// Returns an over-approximation (`skip_assoc_tys` = true) of visibility due to
// associated types for which we can't determine visibility precisely.
fn of_impl(
def_id: LocalDefId,
tcx: TyCtxt<'_>,
effective_visibilities: &EffectiveVisibilities,
) -> Self {
let mut find = FindMin { tcx, effective_visibilities, min: Self::MAX };
find.visit(tcx.type_of(def_id).subst_identity());
if let Some(trait_ref) = tcx.impl_trait_ref(def_id) {
find.visit_trait(trait_ref.subst_identity());
}
find.min
}
}
impl VisibilityLike for ty::Visibility {
const MAX: Self = ty::Visibility::Public;
fn new_min(find: &FindMin<'_, '_, Self>, def_id: LocalDefId) -> Self {
min(find.tcx.local_visibility(def_id), find.min, find.tcx)
}
}
impl VisibilityLike for Option<EffectiveVisibility> {
const MAX: Self = Some(EffectiveVisibility::from_vis(ty::Visibility::Public));
// Type inference is very smart sometimes.
// It can make an impl reachable even some components of its type or trait are unreachable.
// E.g. methods of `impl ReachableTrait<UnreachableTy> for ReachableTy<UnreachableTy> { ... }`
// can be usable from other crates (#57264). So we skip substs when calculating reachability
// and consider an impl reachable if its "shallow" type and trait are reachable.
//
// The assumption we make here is that type-inference won't let you use an impl without knowing
// both "shallow" version of its self type and "shallow" version of its trait if it exists
// (which require reaching the `DefId`s in them).
const SHALLOW: bool = true;
fn new_min(find: &FindMin<'_, '_, Self>, def_id: LocalDefId) -> Self {
if let Some(min) = find.min {
return find
.effective_visibilities
.effective_vis(def_id)
.map(|eff_vis| min.min(*eff_vis, find.tcx));
}
None
}
}
////////////////////////////////////////////////////////////////////////////////
/// The embargo visitor, used to determine the exports of the AST.
////////////////////////////////////////////////////////////////////////////////
struct EmbargoVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
/// Effective visibilities for reachable nodes.
effective_visibilities: EffectiveVisibilities,
/// A set of pairs corresponding to modules, where the first module is
/// reachable via a macro that's defined in the second module. This cannot
/// be represented as reachable because it can't handle the following case:
///
/// pub mod n { // Should be `Public`
/// pub(crate) mod p { // Should *not* be accessible
/// pub fn f() -> i32 { 12 } // Must be `Reachable`
/// }
/// }
/// pub macro m() {
/// n::p::f()
/// }
macro_reachable: FxHashSet<(LocalDefId, LocalDefId)>,
/// Preliminary pass for marking all underlying types of `impl Trait`s as reachable.
impl_trait_pass: bool,
/// Has something changed in the level map?
changed: bool,
}
struct ReachEverythingInTheInterfaceVisitor<'a, 'tcx> {
effective_vis: EffectiveVisibility,
item_def_id: LocalDefId,
ev: &'a mut EmbargoVisitor<'tcx>,
level: Level,
}
impl<'tcx> EmbargoVisitor<'tcx> {
fn get(&self, def_id: LocalDefId) -> Option<EffectiveVisibility> {
self.effective_visibilities.effective_vis(def_id).copied()
}
// Updates node effective visibility.
fn update(
&mut self,
def_id: LocalDefId,
inherited_effective_vis: EffectiveVisibility,
level: Level,
) {
let nominal_vis = self.tcx.local_visibility(def_id);
self.update_eff_vis(def_id, inherited_effective_vis, Some(nominal_vis), level);
}
fn update_eff_vis(
&mut self,
def_id: LocalDefId,
inherited_effective_vis: EffectiveVisibility,
nominal_vis: Option<ty::Visibility>,
level: Level,
) {
let private_vis = ty::Visibility::Restricted(self.tcx.parent_module_from_def_id(def_id));
if Some(private_vis) != nominal_vis {
self.changed |= self.effective_visibilities.update(
def_id,
nominal_vis,
|| private_vis,
inherited_effective_vis,
level,
self.tcx,
);
}
}
fn reach(
&mut self,
def_id: LocalDefId,
effective_vis: EffectiveVisibility,
) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
ReachEverythingInTheInterfaceVisitor {
effective_vis,
item_def_id: def_id,
ev: self,
level: Level::Reachable,
}
}
fn reach_through_impl_trait(
&mut self,
def_id: LocalDefId,
effective_vis: EffectiveVisibility,
) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
ReachEverythingInTheInterfaceVisitor {
effective_vis,
item_def_id: def_id,
ev: self,
level: Level::ReachableThroughImplTrait,
}
}
// We have to make sure that the items that macros might reference
// are reachable, since they might be exported transitively.
fn update_reachability_from_macro(
&mut self,
local_def_id: LocalDefId,
md: &MacroDef,
macro_ev: EffectiveVisibility,
) {
// Non-opaque macros cannot make other items more accessible than they already are.
let hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id);
let attrs = self.tcx.hir().attrs(hir_id);
if attr::find_transparency(attrs, md.macro_rules).0 != Transparency::Opaque {
return;
}
let macro_module_def_id = self.tcx.local_parent(local_def_id);
if self.tcx.opt_def_kind(macro_module_def_id) != Some(DefKind::Mod) {
// The macro's parent doesn't correspond to a `mod`, return early (#63164, #65252).
return;
}
if self.effective_visibilities.public_at_level(local_def_id).is_none() {
return;
}
// Since we are starting from an externally visible module,
// all the parents in the loop below are also guaranteed to be modules.
let mut module_def_id = macro_module_def_id;
loop {
let changed_reachability =
self.update_macro_reachable(module_def_id, macro_module_def_id, macro_ev);
if changed_reachability || module_def_id == CRATE_DEF_ID {
break;
}
module_def_id = self.tcx.local_parent(module_def_id);
}
}
/// Updates the item as being reachable through a macro defined in the given
/// module. Returns `true` if the level has changed.
fn update_macro_reachable(
&mut self,
module_def_id: LocalDefId,
defining_mod: LocalDefId,
macro_ev: EffectiveVisibility,
) -> bool {
if self.macro_reachable.insert((module_def_id, defining_mod)) {
self.update_macro_reachable_mod(module_def_id, defining_mod, macro_ev);
true
} else {
false
}
}
fn update_macro_reachable_mod(
&mut self,
module_def_id: LocalDefId,
defining_mod: LocalDefId,
macro_ev: EffectiveVisibility,
) {
let module = self.tcx.hir().get_module(module_def_id).0;
for item_id in module.item_ids {
let def_kind = self.tcx.def_kind(item_id.owner_id);
let vis = self.tcx.local_visibility(item_id.owner_id.def_id);
self.update_macro_reachable_def(
item_id.owner_id.def_id,
def_kind,
vis,
defining_mod,
macro_ev,
);
}
for child in self.tcx.module_children_local(module_def_id) {
// FIXME: Use module children for the logic above too.
if !child.reexport_chain.is_empty()
&& child.vis.is_accessible_from(defining_mod, self.tcx)
&& let Res::Def(def_kind, def_id) = child.res
&& let Some(def_id) = def_id.as_local() {
let vis = self.tcx.local_visibility(def_id);
self.update_macro_reachable_def(def_id, def_kind, vis, defining_mod, macro_ev);
}
}
}
fn update_macro_reachable_def(
&mut self,
def_id: LocalDefId,
def_kind: DefKind,
vis: ty::Visibility,
module: LocalDefId,
macro_ev: EffectiveVisibility,
) {
self.update(def_id, macro_ev, Level::Reachable);
match def_kind {
// No type privacy, so can be directly marked as reachable.
DefKind::Const | DefKind::Static(_) | DefKind::TraitAlias | DefKind::TyAlias => {
if vis.is_accessible_from(module, self.tcx) {
self.update(def_id, macro_ev, Level::Reachable);
}
}
// Hygiene isn't really implemented for `macro_rules!` macros at the
// moment. Accordingly, marking them as reachable is unwise. `macro` macros
// have normal hygiene, so we can treat them like other items without type
// privacy and mark them reachable.
DefKind::Macro(_) => {
let item = self.tcx.hir().expect_item(def_id);
if let hir::ItemKind::Macro(MacroDef { macro_rules: false, .. }, _) = item.kind {
if vis.is_accessible_from(module, self.tcx) {
self.update(def_id, macro_ev, Level::Reachable);
}
}
}
// We can't use a module name as the final segment of a path, except
// in use statements. Since re-export checking doesn't consider
// hygiene these don't need to be marked reachable. The contents of
// the module, however may be reachable.
DefKind::Mod => {
if vis.is_accessible_from(module, self.tcx) {
self.update_macro_reachable(def_id, module, macro_ev);
}
}
DefKind::Struct | DefKind::Union => {
// While structs and unions have type privacy, their fields do not.
let item = self.tcx.hir().expect_item(def_id);
if let hir::ItemKind::Struct(ref struct_def, _)
| hir::ItemKind::Union(ref struct_def, _) = item.kind
{
for field in struct_def.fields() {
let field_vis = self.tcx.local_visibility(field.def_id);
if field_vis.is_accessible_from(module, self.tcx) {
self.reach(field.def_id, macro_ev).ty();
}
}
} else {
bug!("item {:?} with DefKind {:?}", item, def_kind);
}
}
// These have type privacy, so are not reachable unless they're
// public, or are not namespaced at all.
DefKind::AssocConst
| DefKind::AssocTy
| DefKind::ConstParam
| DefKind::Ctor(_, _)
| DefKind::Enum
| DefKind::ForeignTy
| DefKind::Fn
| DefKind::OpaqueTy
| DefKind::ImplTraitPlaceholder
| DefKind::AssocFn
| DefKind::Trait
| DefKind::TyParam
| DefKind::Variant
| DefKind::LifetimeParam
| DefKind::ExternCrate
| DefKind::Use
| DefKind::ForeignMod
| DefKind::AnonConst
| DefKind::InlineConst
| DefKind::Field
| DefKind::GlobalAsm
| DefKind::Impl { .. }
| DefKind::Closure
| DefKind::Generator => (),
}
}
}
impl<'tcx> Visitor<'tcx> for EmbargoVisitor<'tcx> {
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
if self.impl_trait_pass
&& let hir::ItemKind::OpaqueTy(ref opaque) = item.kind
&& !opaque.in_trait {
// FIXME: This is some serious pessimization intended to workaround deficiencies
// in the reachability pass (`middle/reachable.rs`). Types are marked as link-time
// reachable if they are returned via `impl Trait`, even from private functions.
let pub_ev = EffectiveVisibility::from_vis(ty::Visibility::Public);
self.reach_through_impl_trait(item.owner_id.def_id, pub_ev)
.generics()
.predicates()
.ty();
return;
}
// Update levels of nested things and mark all items
// in interfaces of reachable items as reachable.
let item_ev = self.get(item.owner_id.def_id);
match item.kind {
// The interface is empty, and no nested items.
hir::ItemKind::Use(..)
| hir::ItemKind::ExternCrate(..)
| hir::ItemKind::GlobalAsm(..) => {}
// The interface is empty, and all nested items are processed by `visit_item`.
hir::ItemKind::Mod(..) | hir::ItemKind::OpaqueTy(..) => {}
hir::ItemKind::Macro(ref macro_def, _) => {
if let Some(item_ev) = item_ev {
self.update_reachability_from_macro(item.owner_id.def_id, macro_def, item_ev);
}
}
hir::ItemKind::Const(..)
| hir::ItemKind::Static(..)
| hir::ItemKind::Fn(..)
| hir::ItemKind::TyAlias(..) => {
if let Some(item_ev) = item_ev {
self.reach(item.owner_id.def_id, item_ev).generics().predicates().ty();
}
}
hir::ItemKind::Trait(.., trait_item_refs) => {
if let Some(item_ev) = item_ev {
self.reach(item.owner_id.def_id, item_ev).generics().predicates();
for trait_item_ref in trait_item_refs {
self.update(trait_item_ref.id.owner_id.def_id, item_ev, Level::Reachable);
let tcx = self.tcx;
let mut reach = self.reach(trait_item_ref.id.owner_id.def_id, item_ev);
reach.generics().predicates();
if trait_item_ref.kind == AssocItemKind::Type
&& !tcx.impl_defaultness(trait_item_ref.id.owner_id).has_value()
{
// No type to visit.
} else {
reach.ty();
}
}
}
}
hir::ItemKind::TraitAlias(..) => {
if let Some(item_ev) = item_ev {
self.reach(item.owner_id.def_id, item_ev).generics().predicates();
}
}
hir::ItemKind::Impl(ref impl_) => {
if let Some(item_ev) = Option::<EffectiveVisibility>::of_impl(
item.owner_id.def_id,
self.tcx,
&self.effective_visibilities,
) {
self.update_eff_vis(item.owner_id.def_id, item_ev, None, Level::Direct);
self.reach(item.owner_id.def_id, item_ev)
.generics()
.predicates()
.ty()
.trait_ref();
for impl_item_ref in impl_.items {
let def_id = impl_item_ref.id.owner_id.def_id;
let nominal_vis =
impl_.of_trait.is_none().then(|| self.tcx.local_visibility(def_id));
self.update_eff_vis(def_id, item_ev, nominal_vis, Level::Direct);
if let Some(impl_item_ev) = self.get(def_id) {
self.reach(def_id, impl_item_ev).generics().predicates().ty();
}
}
}
}
hir::ItemKind::Enum(ref def, _) => {
if let Some(item_ev) = item_ev {
self.reach(item.owner_id.def_id, item_ev).generics().predicates();
}
for variant in def.variants {
if let Some(item_ev) = item_ev {
self.update(variant.def_id, item_ev, Level::Reachable);
}
if let Some(variant_ev) = self.get(variant.def_id) {
if let Some(ctor_def_id) = variant.data.ctor_def_id() {
self.update(ctor_def_id, variant_ev, Level::Reachable);
}
for field in variant.data.fields() {
self.update(field.def_id, variant_ev, Level::Reachable);
self.reach(field.def_id, variant_ev).ty();
}
// Corner case: if the variant is reachable, but its
// enum is not, make the enum reachable as well.
self.reach(item.owner_id.def_id, variant_ev).ty();
}
if let Some(ctor_def_id) = variant.data.ctor_def_id() {
if let Some(ctor_ev) = self.get(ctor_def_id) {
self.reach(item.owner_id.def_id, ctor_ev).ty();
}
}
}
}
hir::ItemKind::ForeignMod { items, .. } => {
for foreign_item in items {
if let Some(foreign_item_ev) = self.get(foreign_item.id.owner_id.def_id) {
self.reach(foreign_item.id.owner_id.def_id, foreign_item_ev)
.generics()
.predicates()
.ty();
}
}
}
hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
if let Some(item_ev) = item_ev {
self.reach(item.owner_id.def_id, item_ev).generics().predicates();
for field in struct_def.fields() {
self.update(field.def_id, item_ev, Level::Reachable);
if let Some(field_ev) = self.get(field.def_id) {
self.reach(field.def_id, field_ev).ty();
}
}
}
if let Some(ctor_def_id) = struct_def.ctor_def_id() {
if let Some(item_ev) = item_ev {
self.update(ctor_def_id, item_ev, Level::Reachable);
}
if let Some(ctor_ev) = self.get(ctor_def_id) {
self.reach(item.owner_id.def_id, ctor_ev).ty();
}
}
}
}
}
}
impl ReachEverythingInTheInterfaceVisitor<'_, '_> {
fn generics(&mut self) -> &mut Self {
for param in &self.ev.tcx.generics_of(self.item_def_id).params {
match param.kind {
GenericParamDefKind::Lifetime => {}
GenericParamDefKind::Type { has_default, .. } => {
if has_default {
self.visit(self.ev.tcx.type_of(param.def_id).subst_identity());
}
}
GenericParamDefKind::Const { has_default } => {
self.visit(self.ev.tcx.type_of(param.def_id).subst_identity());
if has_default {
self.visit(self.ev.tcx.const_param_default(param.def_id).subst_identity());
}
}
}
}
self
}
fn predicates(&mut self) -> &mut Self {
self.visit_predicates(self.ev.tcx.predicates_of(self.item_def_id));
self
}
fn ty(&mut self) -> &mut Self {
self.visit(self.ev.tcx.type_of(self.item_def_id).subst_identity());
self
}
fn trait_ref(&mut self) -> &mut Self {
if let Some(trait_ref) = self.ev.tcx.impl_trait_ref(self.item_def_id) {
self.visit_trait(trait_ref.subst_identity());
}
self
}
}
impl<'tcx> DefIdVisitor<'tcx> for ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.ev.tcx
}
fn visit_def_id(
&mut self,
def_id: DefId,
_kind: &str,
_descr: &dyn fmt::Display,
) -> ControlFlow<Self::BreakTy> {
if let Some(def_id) = def_id.as_local() {
self.ev.update_eff_vis(def_id, self.effective_vis, None, self.level);
}
ControlFlow::Continue(())
}
}
////////////////////////////////////////////////////////////////////////////////
/// Visitor, used for EffectiveVisibilities table checking
////////////////////////////////////////////////////////////////////////////////
pub struct TestReachabilityVisitor<'tcx, 'a> {
tcx: TyCtxt<'tcx>,
effective_visibilities: &'a EffectiveVisibilities,
}
impl<'tcx, 'a> TestReachabilityVisitor<'tcx, 'a> {
fn effective_visibility_diagnostic(&mut self, def_id: LocalDefId) {
if self.tcx.has_attr(def_id, sym::rustc_effective_visibility) {
let mut error_msg = String::new();
let span = self.tcx.def_span(def_id.to_def_id());
if let Some(effective_vis) = self.effective_visibilities.effective_vis(def_id) {
for level in Level::all_levels() {
let vis_str = match effective_vis.at_level(level) {
ty::Visibility::Restricted(restricted_id) => {
if restricted_id.is_top_level_module() {
"pub(crate)".to_string()
} else if *restricted_id == self.tcx.parent_module_from_def_id(def_id) {
"pub(self)".to_string()
} else {
format!("pub({})", self.tcx.item_name(restricted_id.to_def_id()))
}
}
ty::Visibility::Public => "pub".to_string(),
};
if level != Level::Direct {
error_msg.push_str(", ");
}
error_msg.push_str(&format!("{level:?}: {vis_str}"));
}
} else {
error_msg.push_str("not in the table");
}
self.tcx.sess.emit_err(ReportEffectiveVisibility { span, descr: error_msg });
}
}
}
impl<'tcx, 'a> Visitor<'tcx> for TestReachabilityVisitor<'tcx, 'a> {
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
self.effective_visibility_diagnostic(item.owner_id.def_id);
match item.kind {
hir::ItemKind::Enum(ref def, _) => {
for variant in def.variants.iter() {
self.effective_visibility_diagnostic(variant.def_id);
if let Some(ctor_def_id) = variant.data.ctor_def_id() {
self.effective_visibility_diagnostic(ctor_def_id);
}
for field in variant.data.fields() {
self.effective_visibility_diagnostic(field.def_id);
}
}
}
hir::ItemKind::Struct(ref def, _) | hir::ItemKind::Union(ref def, _) => {
if let Some(ctor_def_id) = def.ctor_def_id() {
self.effective_visibility_diagnostic(ctor_def_id);
}
for field in def.fields() {
self.effective_visibility_diagnostic(field.def_id);
}
}
_ => {}
}
}
fn visit_trait_item(&mut self, item: &'tcx hir::TraitItem<'tcx>) {
self.effective_visibility_diagnostic(item.owner_id.def_id);
}
fn visit_impl_item(&mut self, item: &'tcx hir::ImplItem<'tcx>) {
self.effective_visibility_diagnostic(item.owner_id.def_id);
}
fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
self.effective_visibility_diagnostic(item.owner_id.def_id);
}
}
//////////////////////////////////////////////////////////////////////////////////////
/// Name privacy visitor, checks privacy and reports violations.
/// Most of name privacy checks are performed during the main resolution phase,
/// or later in type checking when field accesses and associated items are resolved.
/// This pass performs remaining checks for fields in struct expressions and patterns.
//////////////////////////////////////////////////////////////////////////////////////
struct NamePrivacyVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
current_item: LocalDefId,
}
impl<'tcx> NamePrivacyVisitor<'tcx> {
/// Gets the type-checking results for the current body.
/// As this will ICE if called outside bodies, only call when working with
/// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
#[track_caller]
fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> {
self.maybe_typeck_results
.expect("`NamePrivacyVisitor::typeck_results` called outside of body")
}
// Checks that a field in a struct constructor (expression or pattern) is accessible.
fn check_field(
&mut self,
use_ctxt: Span, // syntax context of the field name at the use site
span: Span, // span of the field pattern, e.g., `x: 0`
def: ty::AdtDef<'tcx>, // definition of the struct or enum
field: &'tcx ty::FieldDef,
in_update_syntax: bool,
) {
if def.is_enum() {
return;
}
// definition of the field
let ident = Ident::new(kw::Empty, use_ctxt);
let hir_id = self.tcx.hir().local_def_id_to_hir_id(self.current_item);
let def_id = self.tcx.adjust_ident_and_get_scope(ident, def.did(), hir_id).1;
if !field.vis.is_accessible_from(def_id, self.tcx) {
self.tcx.sess.emit_err(FieldIsPrivate {
span,
field_name: field.name,
variant_descr: def.variant_descr(),
def_path_str: self.tcx.def_path_str(def.did()),
label: if in_update_syntax {
FieldIsPrivateLabel::IsUpdateSyntax { span, field_name: field.name }
} else {
FieldIsPrivateLabel::Other { span }
},
});
}
}
}
impl<'tcx> Visitor<'tcx> for NamePrivacyVisitor<'tcx> {
type NestedFilter = nested_filter::All;
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId) {
// Don't visit nested modules, since we run a separate visitor walk
// for each module in `effective_visibilities`
}
fn visit_nested_body(&mut self, body: hir::BodyId) {
let old_maybe_typeck_results =
self.maybe_typeck_results.replace(self.tcx.typeck_body(body));
let body = self.tcx.hir().body(body);
self.visit_body(body);
self.maybe_typeck_results = old_maybe_typeck_results;
}
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
let orig_current_item = mem::replace(&mut self.current_item, item.owner_id.def_id);
intravisit::walk_item(self, item);
self.current_item = orig_current_item;
}
fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
if let hir::ExprKind::Struct(qpath, fields, ref base) = expr.kind {
let res = self.typeck_results().qpath_res(qpath, expr.hir_id);
let adt = self.typeck_results().expr_ty(expr).ty_adt_def().unwrap();
let variant = adt.variant_of_res(res);
if let Some(base) = *base {
// If the expression uses FRU we need to make sure all the unmentioned fields
// are checked for privacy (RFC 736). Rather than computing the set of
// unmentioned fields, just check them all.
for (vf_index, variant_field) in variant.fields.iter_enumerated() {
let field = fields
.iter()
.find(|f| self.typeck_results().field_index(f.hir_id) == vf_index);
let (use_ctxt, span) = match field {
Some(field) => (field.ident.span, field.span),
None => (base.span, base.span),
};
self.check_field(use_ctxt, span, adt, variant_field, true);
}
} else {
for field in fields {
let use_ctxt = field.ident.span;
let index = self.typeck_results().field_index(field.hir_id);
self.check_field(use_ctxt, field.span, adt, &variant.fields[index], false);
}
}
}
intravisit::walk_expr(self, expr);
}
fn visit_pat(&mut self, pat: &'tcx hir::Pat<'tcx>) {
if let PatKind::Struct(ref qpath, fields, _) = pat.kind {
let res = self.typeck_results().qpath_res(qpath, pat.hir_id);
let adt = self.typeck_results().pat_ty(pat).ty_adt_def().unwrap();
let variant = adt.variant_of_res(res);
for field in fields {
let use_ctxt = field.ident.span;
let index = self.typeck_results().field_index(field.hir_id);
self.check_field(use_ctxt, field.span, adt, &variant.fields[index], false);
}
}
intravisit::walk_pat(self, pat);
}
}
////////////////////////////////////////////////////////////////////////////////////////////
/// Type privacy visitor, checks types for privacy and reports violations.
/// Both explicitly written types and inferred types of expressions and patterns are checked.
/// Checks are performed on "semantic" types regardless of names and their hygiene.
////////////////////////////////////////////////////////////////////////////////////////////
struct TypePrivacyVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
current_item: LocalDefId,
span: Span,
}
impl<'tcx> TypePrivacyVisitor<'tcx> {
/// Gets the type-checking results for the current body.
/// As this will ICE if called outside bodies, only call when working with
/// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
#[track_caller]
fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> {
self.maybe_typeck_results
.expect("`TypePrivacyVisitor::typeck_results` called outside of body")
}
fn item_is_accessible(&self, did: DefId) -> bool {
self.tcx.visibility(did).is_accessible_from(self.current_item, self.tcx)
}
// Take node-id of an expression or pattern and check its type for privacy.
fn check_expr_pat_type(&mut self, id: hir::HirId, span: Span) -> bool {
self.span = span;
let typeck_results = self.typeck_results();
let result: ControlFlow<()> = try {
self.visit(typeck_results.node_type(id))?;
self.visit(typeck_results.node_substs(id))?;
if let Some(adjustments) = typeck_results.adjustments().get(id) {
adjustments.iter().try_for_each(|adjustment| self.visit(adjustment.target))?;
}
};
result.is_break()
}
fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
let is_error = !self.item_is_accessible(def_id);
if is_error {
self.tcx.sess.emit_err(ItemIsPrivate { span: self.span, kind, descr: descr.into() });
}
is_error
}
}
impl<'tcx> Visitor<'tcx> for TypePrivacyVisitor<'tcx> {
type NestedFilter = nested_filter::All;
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId) {
// Don't visit nested modules, since we run a separate visitor walk
// for each module in `effective_visibilities`
}
fn visit_nested_body(&mut self, body: hir::BodyId) {
let old_maybe_typeck_results =
self.maybe_typeck_results.replace(self.tcx.typeck_body(body));
let body = self.tcx.hir().body(body);
self.visit_body(body);
self.maybe_typeck_results = old_maybe_typeck_results;
}
fn visit_generic_arg(&mut self, generic_arg: &'tcx hir::GenericArg<'tcx>) {
match generic_arg {
hir::GenericArg::Type(t) => self.visit_ty(t),
hir::GenericArg::Infer(inf) => self.visit_infer(inf),
hir::GenericArg::Lifetime(_) | hir::GenericArg::Const(_) => {}
}
}
fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx>) {
self.span = hir_ty.span;
if let Some(typeck_results) = self.maybe_typeck_results {
// Types in bodies.
if self.visit(typeck_results.node_type(hir_ty.hir_id)).is_break() {
return;
}
} else {
// Types in signatures.
// FIXME: This is very ineffective. Ideally each HIR type should be converted
// into a semantic type only once and the result should be cached somehow.
if self.visit(rustc_hir_analysis::hir_ty_to_ty(self.tcx, hir_ty)).is_break() {
return;
}
}
intravisit::walk_ty(self, hir_ty);
}
fn visit_infer(&mut self, inf: &'tcx hir::InferArg) {
self.span = inf.span;
if let Some(typeck_results) = self.maybe_typeck_results {
if let Some(ty) = typeck_results.node_type_opt(inf.hir_id) {
if self.visit(ty).is_break() {
return;
}
} else {
// We don't do anything for const infers here.
}
} else {
bug!("visit_infer without typeck_results");
}
intravisit::walk_inf(self, inf);
}
fn visit_trait_ref(&mut self, trait_ref: &'tcx hir::TraitRef<'tcx>) {
self.span = trait_ref.path.span;
if self.maybe_typeck_results.is_none() {
// Avoid calling `hir_trait_to_predicates` in bodies, it will ICE.
// The traits' privacy in bodies is already checked as a part of trait object types.
let bounds = rustc_hir_analysis::hir_trait_to_predicates(
self.tcx,
trait_ref,
// NOTE: This isn't really right, but the actual type doesn't matter here. It's
// just required by `ty::TraitRef`.
self.tcx.types.never,
);
for (pred, _) in bounds.predicates() {
match pred.kind().skip_binder() {
ty::PredicateKind::Clause(ty::Clause::Trait(trait_predicate)) => {
if self.visit_trait(trait_predicate.trait_ref).is_break() {
return;
}
}
ty::PredicateKind::Clause(ty::Clause::Projection(proj_predicate)) => {
let term = self.visit(proj_predicate.term);
if term.is_break()
|| self.visit_projection_ty(proj_predicate.projection_ty).is_break()
{
return;
}
}
_ => {}
}
}
}
intravisit::walk_trait_ref(self, trait_ref);
}
// Check types of expressions
fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
if self.check_expr_pat_type(expr.hir_id, expr.span) {
// Do not check nested expressions if the error already happened.
return;
}
match expr.kind {
hir::ExprKind::Assign(_, rhs, _) | hir::ExprKind::Match(rhs, ..) => {
// Do not report duplicate errors for `x = y` and `match x { ... }`.
if self.check_expr_pat_type(rhs.hir_id, rhs.span) {
return;
}
}
hir::ExprKind::MethodCall(segment, ..) => {
// Method calls have to be checked specially.
self.span = segment.ident.span;
if let Some(def_id) = self.typeck_results().type_dependent_def_id(expr.hir_id) {
if self.visit(self.tcx.type_of(def_id).subst_identity()).is_break() {
return;
}
} else {
self.tcx
.sess
.delay_span_bug(expr.span, "no type-dependent def for method call");
}
}
_ => {}
}
intravisit::walk_expr(self, expr);
}
// Prohibit access to associated items with insufficient nominal visibility.
//
// Additionally, until better reachability analysis for macros 2.0 is available,
// we prohibit access to private statics from other crates, this allows to give
// more code internal visibility at link time. (Access to private functions
// is already prohibited by type privacy for function types.)
fn visit_qpath(&mut self, qpath: &'tcx hir::QPath<'tcx>, id: hir::HirId, span: Span) {
let def = match qpath {
hir::QPath::Resolved(_, path) => match path.res {
Res::Def(kind, def_id) => Some((kind, def_id)),
_ => None,
},
hir::QPath::TypeRelative(..) | hir::QPath::LangItem(..) => self
.maybe_typeck_results
.and_then(|typeck_results| typeck_results.type_dependent_def(id)),
};
let def = def.filter(|(kind, _)| {
matches!(
kind,
DefKind::AssocFn | DefKind::AssocConst | DefKind::AssocTy | DefKind::Static(_)
)
});
if let Some((kind, def_id)) = def {
let is_local_static =
if let DefKind::Static(_) = kind { def_id.is_local() } else { false };
if !self.item_is_accessible(def_id) && !is_local_static {
let name = match *qpath {
hir::QPath::LangItem(it, ..) => {
self.tcx.lang_items().get(it).map(|did| self.tcx.def_path_str(did))
}
hir::QPath::Resolved(_, path) => Some(self.tcx.def_path_str(path.res.def_id())),
hir::QPath::TypeRelative(_, segment) => Some(segment.ident.to_string()),
};
let kind = self.tcx.def_descr(def_id);
let sess = self.tcx.sess;
let _ = match name {
Some(name) => {
sess.emit_err(ItemIsPrivate { span, kind, descr: (&name).into() })
}
None => sess.emit_err(UnnamedItemIsPrivate { span, kind }),
};
return;
}
}
intravisit::walk_qpath(self, qpath, id);
}
// Check types of patterns.
fn visit_pat(&mut self, pattern: &'tcx hir::Pat<'tcx>) {
if self.check_expr_pat_type(pattern.hir_id, pattern.span) {
// Do not check nested patterns if the error already happened.
return;
}
intravisit::walk_pat(self, pattern);
}
fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) {
if let Some(init) = local.init {
if self.check_expr_pat_type(init.hir_id, init.span) {
// Do not report duplicate errors for `let x = y`.
return;
}
}
intravisit::walk_local(self, local);
}
// Check types in item interfaces.
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
let orig_current_item = mem::replace(&mut self.current_item, item.owner_id.def_id);
let old_maybe_typeck_results = self.maybe_typeck_results.take();
intravisit::walk_item(self, item);
self.maybe_typeck_results = old_maybe_typeck_results;
self.current_item = orig_current_item;
}
}
impl<'tcx> DefIdVisitor<'tcx> for TypePrivacyVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_def_id(
&mut self,
def_id: DefId,
kind: &str,
descr: &dyn fmt::Display,
) -> ControlFlow<Self::BreakTy> {
if self.check_def_id(def_id, kind, descr) {
ControlFlow::Break(())
} else {
ControlFlow::Continue(())
}
}
}
///////////////////////////////////////////////////////////////////////////////
/// Obsolete visitors for checking for private items in public interfaces.
/// These visitors are supposed to be kept in frozen state and produce an
/// "old error node set". For backward compatibility the new visitor reports
/// warnings instead of hard errors when the erroneous node is not in this old set.
///////////////////////////////////////////////////////////////////////////////
struct ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
effective_visibilities: &'a EffectiveVisibilities,
in_variant: bool,
// Set of errors produced by this obsolete visitor.
old_error_set: HirIdSet,
}
struct ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
inner: &'a ObsoleteVisiblePrivateTypesVisitor<'b, 'tcx>,
/// Whether the type refers to private types.
contains_private: bool,
/// Whether we've recurred at all (i.e., if we're pointing at the
/// first type on which `visit_ty` was called).
at_outer_type: bool,
/// Whether that first type is a public path.
outer_type_is_public_path: bool,
}
impl<'a, 'tcx> ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
fn path_is_private_type(&self, path: &hir::Path<'_>) -> bool {
let did = match path.res {
Res::PrimTy(..) | Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } | Res::Err => {
return false;
}
res => res.def_id(),
};
// A path can only be private if:
// it's in this crate...
if let Some(did) = did.as_local() {
// .. and it corresponds to a private type in the AST (this returns
// `None` for type parameters).
match self.tcx.hir().find(self.tcx.hir().local_def_id_to_hir_id(did)) {
Some(Node::Item(_)) => !self.tcx.visibility(did).is_public(),
Some(_) | None => false,
}
} else {
false
}
}
fn trait_is_public(&self, trait_id: LocalDefId) -> bool {
// FIXME: this would preferably be using `exported_items`, but all
// traits are exported currently (see `EmbargoVisitor.exported_trait`).
self.effective_visibilities.is_directly_public(trait_id)
}
fn check_generic_bound(&mut self, bound: &hir::GenericBound<'_>) {
if let hir::GenericBound::Trait(ref trait_ref, _) = *bound {
if self.path_is_private_type(trait_ref.trait_ref.path) {
self.old_error_set.insert(trait_ref.trait_ref.hir_ref_id);
}
}
}
fn item_is_public(&self, def_id: LocalDefId) -> bool {
self.effective_visibilities.is_reachable(def_id) || self.tcx.visibility(def_id).is_public()
}
}
impl<'a, 'b, 'tcx, 'v> Visitor<'v> for ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
fn visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>) {
match generic_arg {
hir::GenericArg::Type(t) => self.visit_ty(t),
hir::GenericArg::Infer(inf) => self.visit_ty(&inf.to_ty()),
hir::GenericArg::Lifetime(_) | hir::GenericArg::Const(_) => {}
}
}
fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = ty.kind {
if self.inner.path_is_private_type(path) {
self.contains_private = true;
// Found what we're looking for, so let's stop working.
return;
}
}
if let hir::TyKind::Path(_) = ty.kind {
if self.at_outer_type {
self.outer_type_is_public_path = true;
}
}
self.at_outer_type = false;
intravisit::walk_ty(self, ty)
}
// Don't want to recurse into `[, .. expr]`.
fn visit_expr(&mut self, _: &hir::Expr<'_>) {}
}
impl<'a, 'tcx> Visitor<'tcx> for ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
type NestedFilter = nested_filter::All;
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
match item.kind {
// Contents of a private mod can be re-exported, so we need
// to check internals.
hir::ItemKind::Mod(_) => {}
// An `extern {}` doesn't introduce a new privacy
// namespace (the contents have their own privacies).
hir::ItemKind::ForeignMod { .. } => {}
hir::ItemKind::Trait(.., bounds, _) => {
if !self.trait_is_public(item.owner_id.def_id) {
return;
}
for bound in bounds.iter() {
self.check_generic_bound(bound)
}
}
// Impls need some special handling to try to offer useful
// error messages without (too many) false positives
// (i.e., we could just return here to not check them at
// all, or some worse estimation of whether an impl is
// publicly visible).
hir::ItemKind::Impl(ref impl_) => {
// `impl [... for] Private` is never visible.
let self_contains_private;
// `impl [... for] Public<...>`, but not `impl [... for]
// Vec<Public>` or `(Public,)`, etc.
let self_is_public_path;
// Check the properties of the `Self` type:
{
let mut visitor = ObsoleteCheckTypeForPrivatenessVisitor {
inner: self,
contains_private: false,
at_outer_type: true,
outer_type_is_public_path: false,
};
visitor.visit_ty(impl_.self_ty);
self_contains_private = visitor.contains_private;
self_is_public_path = visitor.outer_type_is_public_path;
}
// Miscellaneous info about the impl:
// `true` iff this is `impl Private for ...`.
let not_private_trait = impl_.of_trait.as_ref().map_or(
true, // no trait counts as public trait
|tr| {
if let Some(def_id) = tr.path.res.def_id().as_local() {
self.trait_is_public(def_id)
} else {
true // external traits must be public
}
},
);
// `true` iff this is a trait impl or at least one method is public.
//
// `impl Public { $( fn ...() {} )* }` is not visible.
//
// This is required over just using the methods' privacy
// directly because we might have `impl<T: Foo<Private>> ...`,
// and we shouldn't warn about the generics if all the methods
// are private (because `T` won't be visible externally).
let trait_or_some_public_method = impl_.of_trait.is_some()
|| impl_.items.iter().any(|impl_item_ref| {
let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
match impl_item.kind {
hir::ImplItemKind::Const(..) | hir::ImplItemKind::Fn(..) => self
.effective_visibilities
.is_reachable(impl_item_ref.id.owner_id.def_id),
hir::ImplItemKind::Type(_) => false,
}
});
if !self_contains_private && not_private_trait && trait_or_some_public_method {
intravisit::walk_generics(self, &impl_.generics);
match impl_.of_trait {
None => {
for impl_item_ref in impl_.items {
// This is where we choose whether to walk down
// further into the impl to check its items. We
// should only walk into public items so that we
// don't erroneously report errors for private
// types in private items.
let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
match impl_item.kind {
hir::ImplItemKind::Const(..) | hir::ImplItemKind::Fn(..)
if self.item_is_public(impl_item.owner_id.def_id) =>
{
intravisit::walk_impl_item(self, impl_item)
}
hir::ImplItemKind::Type(..) => {
intravisit::walk_impl_item(self, impl_item)
}
_ => {}
}
}
}
Some(ref tr) => {
// Any private types in a trait impl fall into three
// categories.
// 1. mentioned in the trait definition
// 2. mentioned in the type params/generics
// 3. mentioned in the associated types of the impl
//
// Those in 1. can only occur if the trait is in
// this crate and will have been warned about on the
// trait definition (there's no need to warn twice
// so we don't check the methods).
//
// Those in 2. are warned via walk_generics and this
// call here.
intravisit::walk_path(self, tr.path);
// Those in 3. are warned with this call.
for impl_item_ref in impl_.items {
let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
if let hir::ImplItemKind::Type(ty) = impl_item.kind {
self.visit_ty(ty);
}
}
}
}
} else if impl_.of_trait.is_none() && self_is_public_path {
// `impl Public<Private> { ... }`. Any public static
// methods will be visible as `Public::foo`.
let mut found_pub_static = false;
for impl_item_ref in impl_.items {
if self
.effective_visibilities
.is_reachable(impl_item_ref.id.owner_id.def_id)
|| self.tcx.visibility(impl_item_ref.id.owner_id).is_public()
{
let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
match impl_item_ref.kind {
AssocItemKind::Const => {
found_pub_static = true;
intravisit::walk_impl_item(self, impl_item);
}
AssocItemKind::Fn { has_self: false } => {
found_pub_static = true;
intravisit::walk_impl_item(self, impl_item);
}
_ => {}
}
}
}
if found_pub_static {
intravisit::walk_generics(self, &impl_.generics)
}
}
return;
}
// `type ... = ...;` can contain private types, because
// we're introducing a new name.
hir::ItemKind::TyAlias(..) => return,
// Not at all public, so we don't care.
_ if !self.item_is_public(item.owner_id.def_id) => {
return;
}
_ => {}
}
// We've carefully constructed it so that if we're here, then
// any `visit_ty`'s will be called on things that are in
// public signatures, i.e., things that we're interested in for
// this visitor.
intravisit::walk_item(self, item);
}
fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
for predicate in generics.predicates {
match predicate {
hir::WherePredicate::BoundPredicate(bound_pred) => {
for bound in bound_pred.bounds.iter() {
self.check_generic_bound(bound)
}
}
hir::WherePredicate::RegionPredicate(_) => {}
hir::WherePredicate::EqPredicate(eq_pred) => {
self.visit_ty(eq_pred.rhs_ty);
}
}
}
}
fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
if self.effective_visibilities.is_reachable(item.owner_id.def_id) {
intravisit::walk_foreign_item(self, item)
}
}
fn visit_ty(&mut self, t: &'tcx hir::Ty<'tcx>) {
if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = t.kind {
if self.path_is_private_type(path) {
self.old_error_set.insert(t.hir_id);
}
}
intravisit::walk_ty(self, t)
}
fn visit_variant(&mut self, v: &'tcx hir::Variant<'tcx>) {
if self.effective_visibilities.is_reachable(v.def_id) {
self.in_variant = true;
intravisit::walk_variant(self, v);
self.in_variant = false;
}
}
fn visit_field_def(&mut self, s: &'tcx hir::FieldDef<'tcx>) {
let vis = self.tcx.visibility(s.def_id);
if vis.is_public() || self.in_variant {
intravisit::walk_field_def(self, s);
}
}
// We don't need to introspect into these at all: an
// expression/block context can't possibly contain exported things.
// (Making them no-ops stops us from traversing the whole AST without
// having to be super careful about our `walk_...` calls above.)
fn visit_block(&mut self, _: &'tcx hir::Block<'tcx>) {}
fn visit_expr(&mut self, _: &'tcx hir::Expr<'tcx>) {}
}
///////////////////////////////////////////////////////////////////////////////
/// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and
/// finds any private components in it.
/// PrivateItemsInPublicInterfacesVisitor ensures there are no private types
/// and traits in public interfaces.
///////////////////////////////////////////////////////////////////////////////
struct SearchInterfaceForPrivateItemsVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
item_def_id: LocalDefId,
/// The visitor checks that each component type is at least this visible.
required_visibility: ty::Visibility,
has_old_errors: bool,
in_assoc_ty: bool,
}
impl SearchInterfaceForPrivateItemsVisitor<'_> {
fn generics(&mut self) -> &mut Self {
for param in &self.tcx.generics_of(self.item_def_id).params {
match param.kind {
GenericParamDefKind::Lifetime => {}
GenericParamDefKind::Type { has_default, .. } => {
if has_default {
self.visit(self.tcx.type_of(param.def_id).subst_identity());
}
}
// FIXME(generic_const_exprs): May want to look inside const here
GenericParamDefKind::Const { .. } => {
self.visit(self.tcx.type_of(param.def_id).subst_identity());
}
}
}
self
}
fn predicates(&mut self) -> &mut Self {
// N.B., we use `explicit_predicates_of` and not `predicates_of`
// because we don't want to report privacy errors due to where
// clauses that the compiler inferred. We only want to
// consider the ones that the user wrote. This is important
// for the inferred outlives rules; see
// `tests/ui/rfc-2093-infer-outlives/privacy.rs`.
self.visit_predicates(self.tcx.explicit_predicates_of(self.item_def_id));
self
}
fn bounds(&mut self) -> &mut Self {
self.visit_predicates(ty::GenericPredicates {
parent: None,
predicates: self.tcx.explicit_item_bounds(self.item_def_id).skip_binder(),
});
self
}
fn ty(&mut self) -> &mut Self {
self.visit(self.tcx.type_of(self.item_def_id).subst_identity());
self
}
fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
if self.leaks_private_dep(def_id) {
self.tcx.emit_spanned_lint(
lint::builtin::EXPORTED_PRIVATE_DEPENDENCIES,
self.tcx.hir().local_def_id_to_hir_id(self.item_def_id),
self.tcx.def_span(self.item_def_id.to_def_id()),
FromPrivateDependencyInPublicInterface {
kind,
descr: descr.into(),
krate: self.tcx.crate_name(def_id.krate),
},
);
}
let Some(local_def_id) = def_id.as_local() else {
return false;
};
let vis = self.tcx.local_visibility(local_def_id);
if !vis.is_at_least(self.required_visibility, self.tcx) {
let hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id);
let vis_descr = match vis {
ty::Visibility::Public => "public",
ty::Visibility::Restricted(vis_def_id) => {
if vis_def_id == self.tcx.parent_module(hir_id) {
"private"
} else if vis_def_id.is_top_level_module() {
"crate-private"
} else {
"restricted"
}
}
};
let span = self.tcx.def_span(self.item_def_id.to_def_id());
if self.has_old_errors
|| self.in_assoc_ty
|| self.tcx.resolutions(()).has_pub_restricted
{
let vis_span = self.tcx.def_span(def_id);
if kind == "trait" {
self.tcx.sess.emit_err(InPublicInterfaceTraits {
span,
vis_descr,
kind,
descr: descr.into(),
vis_span,
});
} else {
self.tcx.sess.emit_err(InPublicInterface {
span,
vis_descr,
kind,
descr: descr.into(),
vis_span,
});
}
} else {
self.tcx.emit_spanned_lint(
lint::builtin::PRIVATE_IN_PUBLIC,
hir_id,
span,
PrivateInPublicLint { vis_descr, kind, descr: descr.into() },
);
}
}
false
}
/// An item is 'leaked' from a private dependency if all
/// of the following are true:
/// 1. It's contained within a public type
/// 2. It comes from a private crate
fn leaks_private_dep(&self, item_id: DefId) -> bool {
let ret = self.required_visibility.is_public() && self.tcx.is_private_dep(item_id.krate);
debug!("leaks_private_dep(item_id={:?})={}", item_id, ret);
ret
}
}
impl<'tcx> DefIdVisitor<'tcx> for SearchInterfaceForPrivateItemsVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_def_id(
&mut self,
def_id: DefId,
kind: &str,
descr: &dyn fmt::Display,
) -> ControlFlow<Self::BreakTy> {
if self.check_def_id(def_id, kind, descr) {
ControlFlow::Break(())
} else {
ControlFlow::Continue(())
}
}
}
struct PrivateItemsInPublicInterfacesChecker<'tcx> {
tcx: TyCtxt<'tcx>,
old_error_set_ancestry: HirIdSet,
}
impl<'tcx> PrivateItemsInPublicInterfacesChecker<'tcx> {
fn check(
&self,
def_id: LocalDefId,
required_visibility: ty::Visibility,
) -> SearchInterfaceForPrivateItemsVisitor<'tcx> {
SearchInterfaceForPrivateItemsVisitor {
tcx: self.tcx,
item_def_id: def_id,
required_visibility,
has_old_errors: self
.old_error_set_ancestry
.contains(&self.tcx.hir().local_def_id_to_hir_id(def_id)),
in_assoc_ty: false,
}
}
fn check_assoc_item(
&self,
def_id: LocalDefId,
assoc_item_kind: AssocItemKind,
vis: ty::Visibility,
) {
let mut check = self.check(def_id, vis);
let (check_ty, is_assoc_ty) = match assoc_item_kind {
AssocItemKind::Const | AssocItemKind::Fn { .. } => (true, false),
AssocItemKind::Type => (self.tcx.impl_defaultness(def_id).has_value(), true),
};
check.in_assoc_ty = is_assoc_ty;
check.generics().predicates();
if check_ty {
check.ty();
}
}
pub fn check_item(&mut self, id: ItemId) {
let tcx = self.tcx;
let def_id = id.owner_id.def_id;
let item_visibility = tcx.local_visibility(def_id);
let def_kind = tcx.def_kind(def_id);
match def_kind {
DefKind::Const | DefKind::Static(_) | DefKind::Fn | DefKind::TyAlias => {
self.check(def_id, item_visibility).generics().predicates().ty();
}
DefKind::OpaqueTy => {
// `ty()` for opaque types is the underlying type,
// it's not a part of interface, so we skip it.
self.check(def_id, item_visibility).generics().bounds();
}
DefKind::Trait => {
let item = tcx.hir().item(id);
if let hir::ItemKind::Trait(.., trait_item_refs) = item.kind {
self.check(item.owner_id.def_id, item_visibility).generics().predicates();
for trait_item_ref in trait_item_refs {
self.check_assoc_item(
trait_item_ref.id.owner_id.def_id,
trait_item_ref.kind,
item_visibility,
);
if let AssocItemKind::Type = trait_item_ref.kind {
self.check(trait_item_ref.id.owner_id.def_id, item_visibility).bounds();
}
}
}
}
DefKind::TraitAlias => {
self.check(def_id, item_visibility).generics().predicates();
}
DefKind::Enum => {
let item = tcx.hir().item(id);
if let hir::ItemKind::Enum(ref def, _) = item.kind {
self.check(item.owner_id.def_id, item_visibility).generics().predicates();
for variant in def.variants {
for field in variant.data.fields() {
self.check(field.def_id, item_visibility).ty();
}
}
}
}
// Subitems of foreign modules have their own publicity.
DefKind::ForeignMod => {
let item = tcx.hir().item(id);
if let hir::ItemKind::ForeignMod { items, .. } = item.kind {
for foreign_item in items {
let vis = tcx.local_visibility(foreign_item.id.owner_id.def_id);
self.check(foreign_item.id.owner_id.def_id, vis)
.generics()
.predicates()
.ty();
}
}
}
// Subitems of structs and unions have their own publicity.
DefKind::Struct | DefKind::Union => {
let item = tcx.hir().item(id);
if let hir::ItemKind::Struct(ref struct_def, _)
| hir::ItemKind::Union(ref struct_def, _) = item.kind
{
self.check(item.owner_id.def_id, item_visibility).generics().predicates();
for field in struct_def.fields() {
let field_visibility = tcx.local_visibility(field.def_id);
self.check(field.def_id, min(item_visibility, field_visibility, tcx)).ty();
}
}
}
// An inherent impl is public when its type is public
// Subitems of inherent impls have their own publicity.
// A trait impl is public when both its type and its trait are public
// Subitems of trait impls have inherited publicity.
DefKind::Impl { .. } => {
let item = tcx.hir().item(id);
if let hir::ItemKind::Impl(ref impl_) = item.kind {
let impl_vis =
ty::Visibility::of_impl(item.owner_id.def_id, tcx, &Default::default());
// check that private components do not appear in the generics or predicates of inherent impls
// this check is intentionally NOT performed for impls of traits, per #90586
if impl_.of_trait.is_none() {
self.check(item.owner_id.def_id, impl_vis).generics().predicates();
}
for impl_item_ref in impl_.items {
let impl_item_vis = if impl_.of_trait.is_none() {
min(
tcx.local_visibility(impl_item_ref.id.owner_id.def_id),
impl_vis,
tcx,
)
} else {
impl_vis
};
self.check_assoc_item(
impl_item_ref.id.owner_id.def_id,
impl_item_ref.kind,
impl_item_vis,
);
}
}
}
_ => {}
}
}
}
pub fn provide(providers: &mut Providers) {
*providers = Providers {
visibility,
effective_visibilities,
check_private_in_public,
check_mod_privacy,
..*providers
};
}
fn visibility(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Visibility<DefId> {
local_visibility(tcx, def_id).to_def_id()
}
fn local_visibility(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Visibility {
match tcx.resolutions(()).visibilities.get(&def_id) {
Some(vis) => *vis,
None => {
let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
match tcx.hir().get(hir_id) {
// Unique types created for closures participate in type privacy checking.
// They have visibilities inherited from the module they are defined in.
Node::Expr(hir::Expr { kind: hir::ExprKind::Closure{..}, .. })
// - AST lowering creates dummy `use` items which don't
// get their entries in the resolver's visibility table.
// - AST lowering also creates opaque type items with inherited visibilities.
// Visibility on them should have no effect, but to avoid the visibility
// query failing on some items, we provide it for opaque types as well.
| Node::Item(hir::Item {
kind: hir::ItemKind::Use(_, hir::UseKind::ListStem)
| hir::ItemKind::OpaqueTy(..),
..
}) => ty::Visibility::Restricted(tcx.parent_module(hir_id)),
// Visibilities of trait impl items are inherited from their traits
// and are not filled in resolve.
Node::ImplItem(impl_item) => {
match tcx.hir().get_by_def_id(tcx.hir().get_parent_item(hir_id).def_id) {
Node::Item(hir::Item {
kind: hir::ItemKind::Impl(hir::Impl { of_trait: Some(tr), .. }),
..
}) => tr.path.res.opt_def_id().map_or_else(
|| {
tcx.sess.delay_span_bug(tr.path.span, "trait without a def-id");
ty::Visibility::Public
},
|def_id| tcx.visibility(def_id).expect_local(),
),
_ => span_bug!(impl_item.span, "the parent is not a trait impl"),
}
}
_ => span_bug!(
tcx.def_span(def_id),
"visibility table unexpectedly missing a def-id: {:?}",
def_id,
),
}
}
}
}
fn check_mod_privacy(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
// Check privacy of names not checked in previous compilation stages.
let mut visitor =
NamePrivacyVisitor { tcx, maybe_typeck_results: None, current_item: module_def_id };
let (module, span, hir_id) = tcx.hir().get_module(module_def_id);
intravisit::walk_mod(&mut visitor, module, hir_id);
// Check privacy of explicitly written types and traits as well as
// inferred types of expressions and patterns.
let mut visitor =
TypePrivacyVisitor { tcx, maybe_typeck_results: None, current_item: module_def_id, span };
intravisit::walk_mod(&mut visitor, module, hir_id);
}
fn effective_visibilities(tcx: TyCtxt<'_>, (): ()) -> &EffectiveVisibilities {
// Build up a set of all exported items in the AST. This is a set of all
// items which are reachable from external crates based on visibility.
let mut visitor = EmbargoVisitor {
tcx,
effective_visibilities: tcx.resolutions(()).effective_visibilities.clone(),
macro_reachable: Default::default(),
// HACK(jynelson): trying to infer the type of `impl Trait` breaks `async-std` (and
// `pub async fn` in general). Since rustdoc never needs to do codegen and doesn't
// care about link-time reachability, keep them unreachable (issue #75100).
impl_trait_pass: !tcx.sess.opts.actually_rustdoc,
changed: false,
};
visitor.effective_visibilities.check_invariants(tcx, true);
if visitor.impl_trait_pass {
// Underlying types of `impl Trait`s are marked as reachable unconditionally,
// so this pass doesn't need to be a part of the fixed point iteration below.
tcx.hir().visit_all_item_likes_in_crate(&mut visitor);
visitor.impl_trait_pass = false;
visitor.changed = false;
}
loop {
tcx.hir().visit_all_item_likes_in_crate(&mut visitor);
if visitor.changed {
visitor.changed = false;
} else {
break;
}
}
visitor.effective_visibilities.check_invariants(tcx, false);
let mut check_visitor =
TestReachabilityVisitor { tcx, effective_visibilities: &visitor.effective_visibilities };
check_visitor.effective_visibility_diagnostic(CRATE_DEF_ID);
tcx.hir().visit_all_item_likes_in_crate(&mut check_visitor);
tcx.arena.alloc(visitor.effective_visibilities)
}
fn check_private_in_public(tcx: TyCtxt<'_>, (): ()) {
let effective_visibilities = tcx.effective_visibilities(());
let mut visitor = ObsoleteVisiblePrivateTypesVisitor {
tcx,
effective_visibilities,
in_variant: false,
old_error_set: Default::default(),
};
tcx.hir().walk_toplevel_module(&mut visitor);
let mut old_error_set_ancestry = HirIdSet::default();
for mut id in visitor.old_error_set.iter().copied() {
loop {
if !old_error_set_ancestry.insert(id) {
break;
}
let parent = tcx.hir().parent_id(id);
if parent == id {
break;
}
id = parent;
}
}
// Check for private types and traits in public interfaces.
let mut checker = PrivateItemsInPublicInterfacesChecker { tcx, old_error_set_ancestry };
for id in tcx.hir().items() {
checker.check_item(id);
}
}
|