1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
//! Support code for encoding and decoding types.
/*
Core encoding and decoding interfaces.
*/
use std::alloc::Allocator;
use std::borrow::Cow;
use std::cell::{Cell, RefCell};
use std::marker::PhantomData;
use std::path;
use std::rc::Rc;
use std::sync::Arc;
/// A note about error handling.
///
/// Encoders may be fallible, but in practice failure is rare and there are so
/// many nested calls that typical Rust error handling (via `Result` and `?`)
/// is pervasive and has non-trivial cost. Instead, impls of this trait must
/// implement a delayed error handling strategy. If a failure occurs, they
/// should record this internally, and all subsequent encoding operations can
/// be processed or ignored, whichever is appropriate. Then they should provide
/// a `finish` method that finishes up encoding. If the encoder is fallible,
/// `finish` should return a `Result` that indicates success or failure.
pub trait Encoder {
// Primitive types:
fn emit_usize(&mut self, v: usize);
fn emit_u128(&mut self, v: u128);
fn emit_u64(&mut self, v: u64);
fn emit_u32(&mut self, v: u32);
fn emit_u16(&mut self, v: u16);
fn emit_u8(&mut self, v: u8);
fn emit_isize(&mut self, v: isize);
fn emit_i128(&mut self, v: i128);
fn emit_i64(&mut self, v: i64);
fn emit_i32(&mut self, v: i32);
fn emit_i16(&mut self, v: i16);
fn emit_i8(&mut self, v: i8);
fn emit_bool(&mut self, v: bool);
fn emit_f64(&mut self, v: f64);
fn emit_f32(&mut self, v: f32);
fn emit_char(&mut self, v: char);
fn emit_str(&mut self, v: &str);
fn emit_raw_bytes(&mut self, s: &[u8]);
// Convenience for the derive macro:
fn emit_enum_variant<F>(&mut self, v_id: usize, f: F)
where
F: FnOnce(&mut Self),
{
self.emit_usize(v_id);
f(self);
}
// We put the field index in a const generic to allow the emit_usize to be
// compiled into a more efficient form. In practice, the variant index is
// known at compile-time, and that knowledge allows much more efficient
// codegen than we'd otherwise get. LLVM isn't always able to make the
// optimization that would otherwise be necessary here, likely due to the
// multiple levels of inlining and const-prop that are needed.
#[inline]
fn emit_fieldless_enum_variant<const ID: usize>(&mut self) {
self.emit_usize(ID)
}
}
// Note: all the methods in this trait are infallible, which may be surprising.
// They used to be fallible (i.e. return a `Result`) but many of the impls just
// panicked when something went wrong, and for the cases that didn't the
// top-level invocation would also just panic on failure. Switching to
// infallibility made things faster and lots of code a little simpler and more
// concise.
pub trait Decoder {
// Primitive types:
fn read_usize(&mut self) -> usize;
fn read_u128(&mut self) -> u128;
fn read_u64(&mut self) -> u64;
fn read_u32(&mut self) -> u32;
fn read_u16(&mut self) -> u16;
fn read_u8(&mut self) -> u8;
fn read_isize(&mut self) -> isize;
fn read_i128(&mut self) -> i128;
fn read_i64(&mut self) -> i64;
fn read_i32(&mut self) -> i32;
fn read_i16(&mut self) -> i16;
fn read_i8(&mut self) -> i8;
fn read_bool(&mut self) -> bool;
fn read_f64(&mut self) -> f64;
fn read_f32(&mut self) -> f32;
fn read_char(&mut self) -> char;
fn read_str(&mut self) -> &str;
fn read_raw_bytes(&mut self, len: usize) -> &[u8];
}
/// Trait for types that can be serialized
///
/// This can be implemented using the `Encodable`, `TyEncodable` and
/// `MetadataEncodable` macros.
///
/// * `Encodable` should be used in crates that don't depend on
/// `rustc_middle`.
/// * `MetadataEncodable` is used in `rustc_metadata` for types that contain
/// `rustc_metadata::rmeta::Lazy`.
/// * `TyEncodable` should be used for types that are only serialized in crate
/// metadata or the incremental cache. This is most types in `rustc_middle`.
pub trait Encodable<S: Encoder> {
fn encode(&self, s: &mut S);
}
/// Trait for types that can be deserialized
///
/// This can be implemented using the `Decodable`, `TyDecodable` and
/// `MetadataDecodable` macros.
///
/// * `Decodable` should be used in crates that don't depend on
/// `rustc_middle`.
/// * `MetadataDecodable` is used in `rustc_metadata` for types that contain
/// `rustc_metadata::rmeta::Lazy`.
/// * `TyDecodable` should be used for types that are only serialized in crate
/// metadata or the incremental cache. This is most types in `rustc_middle`.
pub trait Decodable<D: Decoder>: Sized {
fn decode(d: &mut D) -> Self;
}
macro_rules! direct_serialize_impls {
($($ty:ident $emit_method:ident $read_method:ident),*) => {
$(
impl<S: Encoder> Encodable<S> for $ty {
fn encode(&self, s: &mut S) {
s.$emit_method(*self);
}
}
impl<D: Decoder> Decodable<D> for $ty {
fn decode(d: &mut D) -> $ty {
d.$read_method()
}
}
)*
}
}
direct_serialize_impls! {
usize emit_usize read_usize,
u8 emit_u8 read_u8,
u16 emit_u16 read_u16,
u32 emit_u32 read_u32,
u64 emit_u64 read_u64,
u128 emit_u128 read_u128,
isize emit_isize read_isize,
i8 emit_i8 read_i8,
i16 emit_i16 read_i16,
i32 emit_i32 read_i32,
i64 emit_i64 read_i64,
i128 emit_i128 read_i128,
f32 emit_f32 read_f32,
f64 emit_f64 read_f64,
bool emit_bool read_bool,
char emit_char read_char
}
impl<S: Encoder, T: ?Sized> Encodable<S> for &T
where
T: Encodable<S>,
{
fn encode(&self, s: &mut S) {
(**self).encode(s)
}
}
impl<S: Encoder> Encodable<S> for ! {
fn encode(&self, _s: &mut S) {
unreachable!();
}
}
impl<D: Decoder> Decodable<D> for ! {
fn decode(_d: &mut D) -> ! {
unreachable!()
}
}
impl<S: Encoder> Encodable<S> for ::std::num::NonZeroU32 {
fn encode(&self, s: &mut S) {
s.emit_u32(self.get());
}
}
impl<D: Decoder> Decodable<D> for ::std::num::NonZeroU32 {
fn decode(d: &mut D) -> Self {
::std::num::NonZeroU32::new(d.read_u32()).unwrap()
}
}
impl<S: Encoder> Encodable<S> for str {
fn encode(&self, s: &mut S) {
s.emit_str(self);
}
}
impl<S: Encoder> Encodable<S> for String {
fn encode(&self, s: &mut S) {
s.emit_str(&self[..]);
}
}
impl<D: Decoder> Decodable<D> for String {
fn decode(d: &mut D) -> String {
d.read_str().to_owned()
}
}
impl<S: Encoder> Encodable<S> for () {
fn encode(&self, _s: &mut S) {}
}
impl<D: Decoder> Decodable<D> for () {
fn decode(_: &mut D) -> () {}
}
impl<S: Encoder, T> Encodable<S> for PhantomData<T> {
fn encode(&self, _s: &mut S) {}
}
impl<D: Decoder, T> Decodable<D> for PhantomData<T> {
fn decode(_: &mut D) -> PhantomData<T> {
PhantomData
}
}
impl<D: Decoder, A: Allocator + Default, T: Decodable<D>> Decodable<D> for Box<[T], A> {
fn decode(d: &mut D) -> Box<[T], A> {
let v: Vec<T, A> = Decodable::decode(d);
v.into_boxed_slice()
}
}
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Rc<T> {
fn encode(&self, s: &mut S) {
(**self).encode(s);
}
}
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Rc<T> {
fn decode(d: &mut D) -> Rc<T> {
Rc::new(Decodable::decode(d))
}
}
impl<S: Encoder, T: Encodable<S>> Encodable<S> for [T] {
default fn encode(&self, s: &mut S) {
s.emit_usize(self.len());
for e in self.iter() {
e.encode(s);
}
}
}
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Vec<T> {
fn encode(&self, s: &mut S) {
let slice: &[T] = self;
slice.encode(s);
}
}
impl<D: Decoder, T: Decodable<D>, A: Allocator + Default> Decodable<D> for Vec<T, A> {
default fn decode(d: &mut D) -> Vec<T, A> {
let len = d.read_usize();
let allocator = A::default();
// SAFETY: we set the capacity in advance, only write elements, and
// only set the length at the end once the writing has succeeded.
let mut vec = Vec::with_capacity_in(len, allocator);
unsafe {
let ptr: *mut T = vec.as_mut_ptr();
for i in 0..len {
std::ptr::write(ptr.add(i), Decodable::decode(d));
}
vec.set_len(len);
}
vec
}
}
impl<S: Encoder, T: Encodable<S>, const N: usize> Encodable<S> for [T; N] {
fn encode(&self, s: &mut S) {
let slice: &[T] = self;
slice.encode(s);
}
}
impl<D: Decoder, const N: usize> Decodable<D> for [u8; N] {
fn decode(d: &mut D) -> [u8; N] {
let len = d.read_usize();
assert!(len == N);
let mut v = [0u8; N];
for i in 0..len {
v[i] = Decodable::decode(d);
}
v
}
}
impl<'a, S: Encoder, T: Encodable<S>> Encodable<S> for Cow<'a, [T]>
where
[T]: ToOwned<Owned = Vec<T>>,
{
fn encode(&self, s: &mut S) {
let slice: &[T] = self;
slice.encode(s);
}
}
impl<D: Decoder, T: Decodable<D> + ToOwned> Decodable<D> for Cow<'static, [T]>
where
[T]: ToOwned<Owned = Vec<T>>,
{
fn decode(d: &mut D) -> Cow<'static, [T]> {
let v: Vec<T> = Decodable::decode(d);
Cow::Owned(v)
}
}
impl<'a, S: Encoder> Encodable<S> for Cow<'a, str> {
fn encode(&self, s: &mut S) {
let val: &str = self;
val.encode(s)
}
}
impl<'a, D: Decoder> Decodable<D> for Cow<'a, str> {
fn decode(d: &mut D) -> Cow<'static, str> {
let v: String = Decodable::decode(d);
Cow::Owned(v)
}
}
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Option<T> {
fn encode(&self, s: &mut S) {
match *self {
None => s.emit_enum_variant(0, |_| {}),
Some(ref v) => s.emit_enum_variant(1, |s| v.encode(s)),
}
}
}
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Option<T> {
fn decode(d: &mut D) -> Option<T> {
match d.read_usize() {
0 => None,
1 => Some(Decodable::decode(d)),
_ => panic!("Encountered invalid discriminant while decoding `Option`."),
}
}
}
impl<S: Encoder, T1: Encodable<S>, T2: Encodable<S>> Encodable<S> for Result<T1, T2> {
fn encode(&self, s: &mut S) {
match *self {
Ok(ref v) => s.emit_enum_variant(0, |s| v.encode(s)),
Err(ref v) => s.emit_enum_variant(1, |s| v.encode(s)),
}
}
}
impl<D: Decoder, T1: Decodable<D>, T2: Decodable<D>> Decodable<D> for Result<T1, T2> {
fn decode(d: &mut D) -> Result<T1, T2> {
match d.read_usize() {
0 => Ok(T1::decode(d)),
1 => Err(T2::decode(d)),
_ => panic!("Encountered invalid discriminant while decoding `Result`."),
}
}
}
macro_rules! peel {
($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
}
macro_rules! tuple {
() => ();
( $($name:ident,)+ ) => (
impl<D: Decoder, $($name: Decodable<D>),+> Decodable<D> for ($($name,)+) {
fn decode(d: &mut D) -> ($($name,)+) {
($({ let element: $name = Decodable::decode(d); element },)+)
}
}
impl<S: Encoder, $($name: Encodable<S>),+> Encodable<S> for ($($name,)+) {
#[allow(non_snake_case)]
fn encode(&self, s: &mut S) {
let ($(ref $name,)+) = *self;
$($name.encode(s);)+
}
}
peel! { $($name,)+ }
)
}
tuple! { T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, }
impl<S: Encoder> Encodable<S> for path::Path {
fn encode(&self, e: &mut S) {
self.to_str().unwrap().encode(e);
}
}
impl<S: Encoder> Encodable<S> for path::PathBuf {
fn encode(&self, e: &mut S) {
path::Path::encode(self, e);
}
}
impl<D: Decoder> Decodable<D> for path::PathBuf {
fn decode(d: &mut D) -> path::PathBuf {
let bytes: String = Decodable::decode(d);
path::PathBuf::from(bytes)
}
}
impl<S: Encoder, T: Encodable<S> + Copy> Encodable<S> for Cell<T> {
fn encode(&self, s: &mut S) {
self.get().encode(s);
}
}
impl<D: Decoder, T: Decodable<D> + Copy> Decodable<D> for Cell<T> {
fn decode(d: &mut D) -> Cell<T> {
Cell::new(Decodable::decode(d))
}
}
// FIXME: #15036
// Should use `try_borrow`, returning an
// `encoder.error("attempting to Encode borrowed RefCell")`
// from `encode` when `try_borrow` returns `None`.
impl<S: Encoder, T: Encodable<S>> Encodable<S> for RefCell<T> {
fn encode(&self, s: &mut S) {
self.borrow().encode(s);
}
}
impl<D: Decoder, T: Decodable<D>> Decodable<D> for RefCell<T> {
fn decode(d: &mut D) -> RefCell<T> {
RefCell::new(Decodable::decode(d))
}
}
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Arc<T> {
fn encode(&self, s: &mut S) {
(**self).encode(s);
}
}
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Arc<T> {
fn decode(d: &mut D) -> Arc<T> {
Arc::new(Decodable::decode(d))
}
}
impl<S: Encoder, T: ?Sized + Encodable<S>, A: Allocator + Default> Encodable<S> for Box<T, A> {
fn encode(&self, s: &mut S) {
(**self).encode(s)
}
}
impl<D: Decoder, A: Allocator + Default, T: Decodable<D>> Decodable<D> for Box<T, A> {
fn decode(d: &mut D) -> Box<T, A> {
let allocator = A::default();
Box::new_in(Decodable::decode(d), allocator)
}
}
|