1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
use crate::{HashStableContext, Symbol};
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher, ToStableHashKey};
use rustc_data_structures::unhash::Unhasher;
use rustc_data_structures::AtomicRef;
use rustc_index::vec::Idx;
use rustc_macros::HashStable_Generic;
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use std::borrow::Borrow;
use std::fmt;
use std::hash::{BuildHasherDefault, Hash, Hasher};
pub type StableCrateIdMap =
indexmap::IndexMap<StableCrateId, CrateNum, BuildHasherDefault<Unhasher>>;
rustc_index::newtype_index! {
#[custom_encodable]
#[debug_format = "crate{}"]
pub struct CrateNum {}
}
/// Item definitions in the currently-compiled crate would have the `CrateNum`
/// `LOCAL_CRATE` in their `DefId`.
pub const LOCAL_CRATE: CrateNum = CrateNum::from_u32(0);
impl CrateNum {
#[inline]
pub fn new(x: usize) -> CrateNum {
CrateNum::from_usize(x)
}
#[inline]
pub fn as_def_id(self) -> DefId {
DefId { krate: self, index: CRATE_DEF_INDEX }
}
}
impl fmt::Display for CrateNum {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self.as_u32(), f)
}
}
/// As a local identifier, a `CrateNum` is only meaningful within its context, e.g. within a tcx.
/// Therefore, make sure to include the context when encode a `CrateNum`.
impl<E: Encoder> Encodable<E> for CrateNum {
default fn encode(&self, s: &mut E) {
s.emit_u32(self.as_u32());
}
}
impl<D: Decoder> Decodable<D> for CrateNum {
default fn decode(d: &mut D) -> CrateNum {
CrateNum::from_u32(d.read_u32())
}
}
/// A `DefPathHash` is a fixed-size representation of a `DefPath` that is
/// stable across crate and compilation session boundaries. It consists of two
/// separate 64-bit hashes. The first uniquely identifies the crate this
/// `DefPathHash` originates from (see [StableCrateId]), and the second
/// uniquely identifies the corresponding `DefPath` within that crate. Together
/// they form a unique identifier within an entire crate graph.
///
/// There is a very small chance of hash collisions, which would mean that two
/// different `DefPath`s map to the same `DefPathHash`. Proceeding compilation
/// with such a hash collision would very probably lead to an ICE, and in the
/// worst case lead to a silent mis-compilation. The compiler therefore actively
/// and exhaustively checks for such hash collisions and aborts compilation if
/// it finds one.
///
/// `DefPathHash` uses 64-bit hashes for both the crate-id part and the
/// crate-internal part, even though it is likely that there are many more
/// `LocalDefId`s in a single crate than there are individual crates in a crate
/// graph. Since we use the same number of bits in both cases, the collision
/// probability for the crate-local part will be quite a bit higher (though
/// still very small).
///
/// This imbalance is not by accident: A hash collision in the
/// crate-local part of a `DefPathHash` will be detected and reported while
/// compiling the crate in question. Such a collision does not depend on
/// outside factors and can be easily fixed by the crate maintainer (e.g. by
/// renaming the item in question or by bumping the crate version in a harmless
/// way).
///
/// A collision between crate-id hashes on the other hand is harder to fix
/// because it depends on the set of crates in the entire crate graph of a
/// compilation session. Again, using the same crate with a different version
/// number would fix the issue with a high probability -- but that might be
/// easier said then done if the crates in questions are dependencies of
/// third-party crates.
///
/// That being said, given a high quality hash function, the collision
/// probabilities in question are very small. For example, for a big crate like
/// `rustc_middle` (with ~50000 `LocalDefId`s as of the time of writing) there
/// is a probability of roughly 1 in 14,750,000,000 of a crate-internal
/// collision occurring. For a big crate graph with 1000 crates in it, there is
/// a probability of 1 in 36,890,000,000,000 of a `StableCrateId` collision.
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Debug)]
#[derive(HashStable_Generic, Encodable, Decodable)]
pub struct DefPathHash(pub Fingerprint);
impl DefPathHash {
/// Returns the [StableCrateId] identifying the crate this [DefPathHash]
/// originates from.
#[inline]
pub fn stable_crate_id(&self) -> StableCrateId {
StableCrateId(self.0.as_value().0)
}
/// Returns the crate-local part of the [DefPathHash].
///
/// Used for tests.
#[inline]
pub fn local_hash(&self) -> u64 {
self.0.as_value().1
}
/// Builds a new [DefPathHash] with the given [StableCrateId] and
/// `local_hash`, where `local_hash` must be unique within its crate.
pub fn new(stable_crate_id: StableCrateId, local_hash: u64) -> DefPathHash {
DefPathHash(Fingerprint::new(stable_crate_id.0, local_hash))
}
}
impl Default for DefPathHash {
fn default() -> Self {
DefPathHash(Fingerprint::ZERO)
}
}
impl Borrow<Fingerprint> for DefPathHash {
#[inline]
fn borrow(&self) -> &Fingerprint {
&self.0
}
}
/// A [`StableCrateId`] is a 64-bit hash of a crate name, together with all
/// `-Cmetadata` arguments, and some other data. It is to [`CrateNum`] what [`DefPathHash`] is to
/// [`DefId`]. It is stable across compilation sessions.
///
/// Since the ID is a hash value, there is a small chance that two crates
/// end up with the same [`StableCrateId`]. The compiler will check for such
/// collisions when loading crates and abort compilation in order to avoid
/// further trouble.
///
/// For more information on the possibility of hash collisions in rustc,
/// see the discussion in [`DefId`].
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Debug)]
#[derive(HashStable_Generic, Encodable, Decodable)]
pub struct StableCrateId(pub(crate) u64);
impl StableCrateId {
pub fn to_u64(self) -> u64 {
self.0
}
/// Computes the stable ID for a crate with the given name and
/// `-Cmetadata` arguments.
pub fn new(crate_name: Symbol, is_exe: bool, mut metadata: Vec<String>) -> StableCrateId {
let mut hasher = StableHasher::new();
// We must hash the string text of the crate name, not the id, as the id is not stable
// across builds.
crate_name.as_str().hash(&mut hasher);
// We don't want the stable crate ID to depend on the order of
// -C metadata arguments, so sort them:
metadata.sort();
// Every distinct -C metadata value is only incorporated once:
metadata.dedup();
hasher.write(b"metadata");
for s in &metadata {
// Also incorporate the length of a metadata string, so that we generate
// different values for `-Cmetadata=ab -Cmetadata=c` and
// `-Cmetadata=a -Cmetadata=bc`
hasher.write_usize(s.len());
hasher.write(s.as_bytes());
}
// Also incorporate crate type, so that we don't get symbol conflicts when
// linking against a library of the same name, if this is an executable.
hasher.write(if is_exe { b"exe" } else { b"lib" });
// Also incorporate the rustc version. Otherwise, with -Zsymbol-mangling-version=v0
// and no -Cmetadata, symbols from the same crate compiled with different versions of
// rustc are named the same.
//
// RUSTC_FORCE_RUSTC_VERSION is used to inject rustc version information
// during testing.
if let Some(val) = std::env::var_os("RUSTC_FORCE_RUSTC_VERSION") {
hasher.write(val.to_string_lossy().into_owned().as_bytes())
} else {
hasher.write(option_env!("CFG_VERSION").unwrap_or("unknown version").as_bytes());
}
StableCrateId(hasher.finish())
}
}
rustc_index::newtype_index! {
/// A DefIndex is an index into the hir-map for a crate, identifying a
/// particular definition. It should really be considered an interned
/// shorthand for a particular DefPath.
#[custom_encodable] // (only encodable in metadata)
#[debug_format = "DefIndex({})"]
pub struct DefIndex {
/// The crate root is always assigned index 0 by the AST Map code,
/// thanks to `NodeCollector::new`.
const CRATE_DEF_INDEX = 0;
}
}
impl<E: Encoder> Encodable<E> for DefIndex {
default fn encode(&self, _: &mut E) {
panic!("cannot encode `DefIndex` with `{}`", std::any::type_name::<E>());
}
}
impl<D: Decoder> Decodable<D> for DefIndex {
default fn decode(_: &mut D) -> DefIndex {
panic!("cannot decode `DefIndex` with `{}`", std::any::type_name::<D>());
}
}
/// A `DefId` identifies a particular *definition*, by combining a crate
/// index and a def index.
///
/// You can create a `DefId` from a `LocalDefId` using `local_def_id.to_def_id()`.
#[derive(Clone, PartialEq, Eq, Copy)]
// Don't derive order on 64-bit big-endian, so we can be consistent regardless of field order.
#[cfg_attr(not(all(target_pointer_width = "64", target_endian = "big")), derive(PartialOrd, Ord))]
// On below-64 bit systems we can simply use the derived `Hash` impl
#[cfg_attr(not(target_pointer_width = "64"), derive(Hash))]
#[repr(C)]
#[rustc_pass_by_value]
// We guarantee field order. Note that the order is essential here, see below why.
pub struct DefId {
// cfg-ing the order of fields so that the `DefIndex` which is high entropy always ends up in
// the lower bits no matter the endianness. This allows the compiler to turn that `Hash` impl
// into a direct call to `u64::hash(_)`.
#[cfg(not(all(target_pointer_width = "64", target_endian = "big")))]
pub index: DefIndex,
pub krate: CrateNum,
#[cfg(all(target_pointer_width = "64", target_endian = "big"))]
pub index: DefIndex,
}
// On 64-bit systems, we can hash the whole `DefId` as one `u64` instead of two `u32`s. This
// improves performance without impairing `FxHash` quality. So the below code gets compiled to a
// noop on little endian systems because the memory layout of `DefId` is as follows:
//
// ```
// +-1--------------31-+-32-------------63-+
// ! index ! krate !
// +-------------------+-------------------+
// ```
//
// The order here has direct impact on `FxHash` quality because we have far more `DefIndex` per
// crate than we have `Crate`s within one compilation. Or in other words, this arrangement puts
// more entropy in the low bits than the high bits. The reason this matters is that `FxHash`, which
// is used throughout rustc, has problems distributing the entropy from the high bits, so reversing
// the order would lead to a large number of collisions and thus far worse performance.
//
// On 64-bit big-endian systems, this compiles to a 64-bit rotation by 32 bits, which is still
// faster than another `FxHash` round.
#[cfg(target_pointer_width = "64")]
impl Hash for DefId {
fn hash<H: Hasher>(&self, h: &mut H) {
(((self.krate.as_u32() as u64) << 32) | (self.index.as_u32() as u64)).hash(h)
}
}
// Implement the same comparison as derived with the other field order.
#[cfg(all(target_pointer_width = "64", target_endian = "big"))]
impl Ord for DefId {
#[inline]
fn cmp(&self, other: &DefId) -> std::cmp::Ordering {
Ord::cmp(&(self.index, self.krate), &(other.index, other.krate))
}
}
#[cfg(all(target_pointer_width = "64", target_endian = "big"))]
impl PartialOrd for DefId {
#[inline]
fn partial_cmp(&self, other: &DefId) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl DefId {
/// Makes a local `DefId` from the given `DefIndex`.
#[inline]
pub fn local(index: DefIndex) -> DefId {
DefId { krate: LOCAL_CRATE, index }
}
/// Returns whether the item is defined in the crate currently being compiled.
#[inline]
pub fn is_local(self) -> bool {
self.krate == LOCAL_CRATE
}
#[inline]
pub fn as_local(self) -> Option<LocalDefId> {
self.is_local().then(|| LocalDefId { local_def_index: self.index })
}
#[inline]
#[track_caller]
pub fn expect_local(self) -> LocalDefId {
// NOTE: `match` below is required to apply `#[track_caller]`,
// i.e. don't use closures.
match self.as_local() {
Some(local_def_id) => local_def_id,
None => panic!("DefId::expect_local: `{self:?}` isn't local"),
}
}
#[inline]
pub fn is_crate_root(self) -> bool {
self.index == CRATE_DEF_INDEX
}
#[inline]
pub fn as_crate_root(self) -> Option<CrateNum> {
self.is_crate_root().then_some(self.krate)
}
#[inline]
pub fn is_top_level_module(self) -> bool {
self.is_local() && self.is_crate_root()
}
}
impl From<LocalDefId> for DefId {
fn from(local: LocalDefId) -> DefId {
local.to_def_id()
}
}
impl<E: Encoder> Encodable<E> for DefId {
default fn encode(&self, s: &mut E) {
self.krate.encode(s);
self.index.encode(s);
}
}
impl<D: Decoder> Decodable<D> for DefId {
default fn decode(d: &mut D) -> DefId {
DefId { krate: Decodable::decode(d), index: Decodable::decode(d) }
}
}
pub fn default_def_id_debug(def_id: DefId, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("DefId").field("krate", &def_id.krate).field("index", &def_id.index).finish()
}
pub static DEF_ID_DEBUG: AtomicRef<fn(DefId, &mut fmt::Formatter<'_>) -> fmt::Result> =
AtomicRef::new(&(default_def_id_debug as fn(_, &mut fmt::Formatter<'_>) -> _));
impl fmt::Debug for DefId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(*DEF_ID_DEBUG)(*self, f)
}
}
rustc_data_structures::define_id_collections!(DefIdMap, DefIdSet, DefIdMapEntry, DefId);
/// A `LocalDefId` is equivalent to a `DefId` with `krate == LOCAL_CRATE`. Since
/// we encode this information in the type, we can ensure at compile time that
/// no `DefId`s from upstream crates get thrown into the mix. There are quite a
/// few cases where we know that only `DefId`s from the local crate are expected;
/// a `DefId` from a different crate would signify a bug somewhere. This
/// is when `LocalDefId` comes in handy.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct LocalDefId {
pub local_def_index: DefIndex,
}
// To ensure correctness of incremental compilation,
// `LocalDefId` must not implement `Ord` or `PartialOrd`.
// See https://github.com/rust-lang/rust/issues/90317.
impl !Ord for LocalDefId {}
impl !PartialOrd for LocalDefId {}
pub const CRATE_DEF_ID: LocalDefId = LocalDefId { local_def_index: CRATE_DEF_INDEX };
impl Idx for LocalDefId {
#[inline]
fn new(idx: usize) -> Self {
LocalDefId { local_def_index: Idx::new(idx) }
}
#[inline]
fn index(self) -> usize {
self.local_def_index.index()
}
}
impl LocalDefId {
#[inline]
pub fn to_def_id(self) -> DefId {
DefId { krate: LOCAL_CRATE, index: self.local_def_index }
}
#[inline]
pub fn is_top_level_module(self) -> bool {
self == CRATE_DEF_ID
}
}
impl fmt::Debug for LocalDefId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.to_def_id().fmt(f)
}
}
impl<E: Encoder> Encodable<E> for LocalDefId {
fn encode(&self, s: &mut E) {
self.to_def_id().encode(s);
}
}
impl<D: Decoder> Decodable<D> for LocalDefId {
fn decode(d: &mut D) -> LocalDefId {
DefId::decode(d).expect_local()
}
}
rustc_data_structures::define_id_collections!(
LocalDefIdMap,
LocalDefIdSet,
LocalDefIdMapEntry,
LocalDefId
);
impl<CTX: HashStableContext> HashStable<CTX> for DefId {
#[inline]
fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
self.to_stable_hash_key(hcx).hash_stable(hcx, hasher);
}
}
impl<CTX: HashStableContext> HashStable<CTX> for LocalDefId {
#[inline]
fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
self.to_stable_hash_key(hcx).hash_stable(hcx, hasher);
}
}
impl<CTX: HashStableContext> HashStable<CTX> for CrateNum {
#[inline]
fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
self.to_stable_hash_key(hcx).hash_stable(hcx, hasher);
}
}
impl<CTX: HashStableContext> ToStableHashKey<CTX> for DefId {
type KeyType = DefPathHash;
#[inline]
fn to_stable_hash_key(&self, hcx: &CTX) -> DefPathHash {
hcx.def_path_hash(*self)
}
}
impl<CTX: HashStableContext> ToStableHashKey<CTX> for LocalDefId {
type KeyType = DefPathHash;
#[inline]
fn to_stable_hash_key(&self, hcx: &CTX) -> DefPathHash {
hcx.def_path_hash(self.to_def_id())
}
}
impl<CTX: HashStableContext> ToStableHashKey<CTX> for CrateNum {
type KeyType = DefPathHash;
#[inline]
fn to_stable_hash_key(&self, hcx: &CTX) -> DefPathHash {
self.as_def_id().to_stable_hash_key(hcx)
}
}
|