1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
use crate::abi::call::{ArgAbi, FnAbi, Reg, Uniform};
use crate::abi::{HasDataLayout, Size};
fn classify_ret<Ty, C>(cx: &C, ret: &mut ArgAbi<'_, Ty>, offset: &mut Size)
where
C: HasDataLayout,
{
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(32);
} else {
ret.make_indirect();
*offset += cx.data_layout().pointer_size;
}
}
fn classify_arg<Ty, C>(cx: &C, arg: &mut ArgAbi<'_, Ty>, offset: &mut Size)
where
C: HasDataLayout,
{
let dl = cx.data_layout();
let size = arg.layout.size;
let align = arg.layout.align.max(dl.i32_align).min(dl.i64_align).abi;
if arg.layout.is_aggregate() {
let pad_i32 = !offset.is_aligned(align);
arg.cast_to_and_pad_i32(Uniform { unit: Reg::i32(), total: size }, pad_i32);
} else {
arg.extend_integer_width_to(32);
}
*offset = offset.align_to(align) + size.align_to(align);
}
pub fn compute_abi_info<Ty, C>(cx: &C, fn_abi: &mut FnAbi<'_, Ty>)
where
C: HasDataLayout,
{
let mut offset = Size::ZERO;
if !fn_abi.ret.is_ignore() {
classify_ret(cx, &mut fn_abi.ret, &mut offset);
}
for arg in fn_abi.args.iter_mut() {
if arg.is_ignore() {
continue;
}
classify_arg(cx, arg, &mut offset);
}
}
|