summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_trait_selection/src/solve/project_goals.rs
blob: e39fa05339286ab86d9d18e512eec92ae0448c3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
use crate::traits::{specialization_graph, translate_substs};

use super::assembly::{self, Candidate, CandidateSource};
use super::infcx_ext::InferCtxtExt;
use super::trait_goals::structural_traits;
use super::{Certainty, EvalCtxt, Goal, MaybeCause, QueryResult};
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::specialization_graph::LeafDef;
use rustc_infer::traits::Reveal;
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::ty::{ProjectionPredicate, TypeSuperVisitable, TypeVisitor};
use rustc_middle::ty::{ToPredicate, TypeVisitable};
use rustc_span::DUMMY_SP;
use std::iter;
use std::ops::ControlFlow;

impl<'tcx> EvalCtxt<'_, 'tcx> {
    pub(super) fn compute_projection_goal(
        &mut self,
        goal: Goal<'tcx, ProjectionPredicate<'tcx>>,
    ) -> QueryResult<'tcx> {
        // To only compute normalization once for each projection we only
        // normalize if the expected term is an unconstrained inference variable.
        //
        // E.g. for `<T as Trait>::Assoc = u32` we recursively compute the goal
        // `exists<U> <T as Trait>::Assoc = U` and then take the resulting type for
        // `U` and equate it with `u32`. This means that we don't need a separate
        // projection cache in the solver.
        if self.term_is_fully_unconstrained(goal) {
            let candidates = self.assemble_and_evaluate_candidates(goal);
            self.merge_project_candidates(candidates)
        } else {
            let predicate = goal.predicate;
            let unconstrained_rhs = match predicate.term.unpack() {
                ty::TermKind::Ty(_) => self.infcx.next_ty_infer().into(),
                ty::TermKind::Const(ct) => self.infcx.next_const_infer(ct.ty()).into(),
            };
            let unconstrained_predicate = ty::Clause::Projection(ProjectionPredicate {
                projection_ty: goal.predicate.projection_ty,
                term: unconstrained_rhs,
            });
            let (_has_changed, normalize_certainty) =
                self.evaluate_goal(goal.with(self.tcx(), unconstrained_predicate))?;

            let nested_eq_goals =
                self.infcx.eq(goal.param_env, unconstrained_rhs, predicate.term)?;
            let eval_certainty = self.evaluate_all(nested_eq_goals)?;
            self.make_canonical_response(normalize_certainty.unify_and(eval_certainty))
        }
    }

    /// Is the projection predicate is of the form `exists<T> <Ty as Trait>::Assoc = T`.
    ///
    /// This is the case if the `term` is an inference variable in the innermost universe
    /// and does not occur in any other part of the predicate.
    fn term_is_fully_unconstrained(&self, goal: Goal<'tcx, ProjectionPredicate<'tcx>>) -> bool {
        let infcx = self.infcx;
        let term_is_infer = match goal.predicate.term.unpack() {
            ty::TermKind::Ty(ty) => {
                if let &ty::Infer(ty::TyVar(vid)) = ty.kind() {
                    match infcx.probe_ty_var(vid) {
                        Ok(value) => bug!("resolved var in query: {goal:?} {value:?}"),
                        Err(universe) => universe == infcx.universe(),
                    }
                } else {
                    false
                }
            }
            ty::TermKind::Const(ct) => {
                if let ty::ConstKind::Infer(ty::InferConst::Var(vid)) = ct.kind() {
                    match self.infcx.probe_const_var(vid) {
                        Ok(value) => bug!("resolved var in query: {goal:?} {value:?}"),
                        Err(universe) => universe == infcx.universe(),
                    }
                } else {
                    false
                }
            }
        };

        // Guard against `<T as Trait<?0>>::Assoc = ?0>`.
        struct ContainsTerm<'tcx> {
            term: ty::Term<'tcx>,
        }
        impl<'tcx> TypeVisitor<'tcx> for ContainsTerm<'tcx> {
            type BreakTy = ();
            fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
                if t.needs_infer() {
                    if ty::Term::from(t) == self.term {
                        ControlFlow::BREAK
                    } else {
                        t.super_visit_with(self)
                    }
                } else {
                    ControlFlow::CONTINUE
                }
            }

            fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
                if c.needs_infer() {
                    if ty::Term::from(c) == self.term {
                        ControlFlow::BREAK
                    } else {
                        c.super_visit_with(self)
                    }
                } else {
                    ControlFlow::CONTINUE
                }
            }
        }

        let mut visitor = ContainsTerm { term: goal.predicate.term };

        term_is_infer
            && goal.predicate.projection_ty.visit_with(&mut visitor).is_continue()
            && goal.param_env.visit_with(&mut visitor).is_continue()
    }

    fn merge_project_candidates(
        &mut self,
        mut candidates: Vec<Candidate<'tcx>>,
    ) -> QueryResult<'tcx> {
        match candidates.len() {
            0 => return Err(NoSolution),
            1 => return Ok(candidates.pop().unwrap().result),
            _ => {}
        }

        if candidates.len() > 1 {
            let mut i = 0;
            'outer: while i < candidates.len() {
                for j in (0..candidates.len()).filter(|&j| i != j) {
                    if self.project_candidate_should_be_dropped_in_favor_of(
                        &candidates[i],
                        &candidates[j],
                    ) {
                        debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
                        candidates.swap_remove(i);
                        continue 'outer;
                    }
                }

                debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
                // If there are *STILL* multiple candidates, give up
                // and report ambiguity.
                i += 1;
                if i > 1 {
                    debug!("multiple matches, ambig");
                    // FIXME: return overflow if all candidates overflow, otherwise return ambiguity.
                    unimplemented!();
                }
            }
        }

        Ok(candidates.pop().unwrap().result)
    }

    fn project_candidate_should_be_dropped_in_favor_of(
        &self,
        candidate: &Candidate<'tcx>,
        other: &Candidate<'tcx>,
    ) -> bool {
        // FIXME: implement this
        match (candidate.source, other.source) {
            (CandidateSource::Impl(_), _)
            | (CandidateSource::ParamEnv(_), _)
            | (CandidateSource::BuiltinImpl, _)
            | (CandidateSource::AliasBound(_), _) => unimplemented!(),
        }
    }
}

impl<'tcx> assembly::GoalKind<'tcx> for ProjectionPredicate<'tcx> {
    fn self_ty(self) -> Ty<'tcx> {
        self.self_ty()
    }

    fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
        self.with_self_ty(tcx, self_ty)
    }

    fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId {
        self.trait_def_id(tcx)
    }

    fn consider_impl_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, ProjectionPredicate<'tcx>>,
        impl_def_id: DefId,
    ) -> QueryResult<'tcx> {
        let tcx = ecx.tcx();

        let goal_trait_ref = goal.predicate.projection_ty.trait_ref(tcx);
        let impl_trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
        let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsPlaceholder };
        if iter::zip(goal_trait_ref.substs, impl_trait_ref.skip_binder().substs)
            .any(|(goal, imp)| !drcx.generic_args_may_unify(goal, imp))
        {
            return Err(NoSolution);
        }

        ecx.infcx.probe(|_| {
            let impl_substs = ecx.infcx.fresh_substs_for_item(DUMMY_SP, impl_def_id);
            let impl_trait_ref = impl_trait_ref.subst(tcx, impl_substs);

            let mut nested_goals = ecx.infcx.eq(goal.param_env, goal_trait_ref, impl_trait_ref)?;
            let where_clause_bounds = tcx
                .predicates_of(impl_def_id)
                .instantiate(tcx, impl_substs)
                .predicates
                .into_iter()
                .map(|pred| goal.with(tcx, pred));

            nested_goals.extend(where_clause_bounds);
            let trait_ref_certainty = ecx.evaluate_all(nested_goals)?;

            // In case the associated item is hidden due to specialization, we have to
            // return ambiguity this would otherwise be incomplete, resulting in
            // unsoundness during coherence (#105782).
            let Some(assoc_def) = fetch_eligible_assoc_item_def(
                ecx.infcx,
                goal.param_env,
                goal_trait_ref,
                goal.predicate.def_id(),
                impl_def_id
            )? else {
                let certainty = Certainty::Maybe(MaybeCause::Ambiguity);
                return ecx.make_canonical_response(trait_ref_certainty.unify_and(certainty));
            };

            if !assoc_def.item.defaultness(tcx).has_value() {
                tcx.sess.delay_span_bug(
                    tcx.def_span(assoc_def.item.def_id),
                    "missing value for assoc item in impl",
                );
            }

            // Getting the right substitutions here is complex, e.g. given:
            // - a goal `<Vec<u32> as Trait<i32>>::Assoc<u64>`
            // - the applicable impl `impl<T> Trait<i32> for Vec<T>`
            // - and the impl which defines `Assoc` being `impl<T, U> Trait<U> for Vec<T>`
            //
            // We first rebase the goal substs onto the impl, going from `[Vec<u32>, i32, u64]`
            // to `[u32, u64]`.
            //
            // And then map these substs to the substs of the defining impl of `Assoc`, going
            // from `[u32, u64]` to `[u32, i32, u64]`.
            let impl_substs_with_gat = goal.predicate.projection_ty.substs.rebase_onto(
                tcx,
                goal_trait_ref.def_id,
                impl_substs,
            );
            let substs = translate_substs(
                ecx.infcx,
                goal.param_env,
                impl_def_id,
                impl_substs_with_gat,
                assoc_def.defining_node,
            );

            // Finally we construct the actual value of the associated type.
            let is_const = matches!(tcx.def_kind(assoc_def.item.def_id), DefKind::AssocConst);
            let ty = tcx.bound_type_of(assoc_def.item.def_id);
            let term: ty::EarlyBinder<ty::Term<'tcx>> = if is_const {
                let identity_substs =
                    ty::InternalSubsts::identity_for_item(tcx, assoc_def.item.def_id);
                let did = ty::WithOptConstParam::unknown(assoc_def.item.def_id);
                let kind =
                    ty::ConstKind::Unevaluated(ty::UnevaluatedConst::new(did, identity_substs));
                ty.map_bound(|ty| tcx.mk_const(kind, ty).into())
            } else {
                ty.map_bound(|ty| ty.into())
            };

            // The term of our goal should be fully unconstrained, so this should never fail.
            //
            // It can however be ambiguous when the resolved type is a projection.
            let nested_goals = ecx
                .infcx
                .eq(goal.param_env, goal.predicate.term, term.subst(tcx, substs))
                .expect("failed to unify with unconstrained term");
            let rhs_certainty =
                ecx.evaluate_all(nested_goals).expect("failed to unify with unconstrained term");

            ecx.make_canonical_response(trait_ref_certainty.unify_and(rhs_certainty))
        })
    }

    fn consider_assumption(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
        assumption: ty::Predicate<'tcx>,
    ) -> QueryResult<'tcx> {
        if let Some(poly_projection_pred) = assumption.to_opt_poly_projection_pred() {
            ecx.infcx.probe(|_| {
                let assumption_projection_pred =
                    ecx.infcx.instantiate_bound_vars_with_infer(poly_projection_pred);
                let nested_goals = ecx.infcx.eq(
                    goal.param_env,
                    goal.predicate.projection_ty,
                    assumption_projection_pred.projection_ty,
                )?;
                let subst_certainty = ecx.evaluate_all(nested_goals)?;

                // The term of our goal should be fully unconstrained, so this should never fail.
                //
                // It can however be ambiguous when the resolved type is a projection.
                let nested_goals = ecx
                    .infcx
                    .eq(goal.param_env, goal.predicate.term, assumption_projection_pred.term)
                    .expect("failed to unify with unconstrained term");
                let rhs_certainty = ecx
                    .evaluate_all(nested_goals)
                    .expect("failed to unify with unconstrained term");

                ecx.make_canonical_response(subst_certainty.unify_and(rhs_certainty))
            })
        } else {
            Err(NoSolution)
        }
    }

    fn consider_auto_trait_candidate(
        _ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        bug!("auto traits do not have associated types: {:?}", goal);
    }

    fn consider_trait_alias_candidate(
        _ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        bug!("trait aliases do not have associated types: {:?}", goal);
    }

    fn consider_builtin_sized_candidate(
        _ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        bug!("`Sized` does not have an associated type: {:?}", goal);
    }

    fn consider_builtin_copy_clone_candidate(
        _ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        bug!("`Copy`/`Clone` does not have an associated type: {:?}", goal);
    }

    fn consider_builtin_pointer_sized_candidate(
        _ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        bug!("`PointerSized` does not have an associated type: {:?}", goal);
    }

    fn consider_builtin_fn_trait_candidates(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
        goal_kind: ty::ClosureKind,
    ) -> QueryResult<'tcx> {
        if let Some(tupled_inputs_and_output) =
            structural_traits::extract_tupled_inputs_and_output_from_callable(
                ecx.tcx(),
                goal.predicate.self_ty(),
                goal_kind,
            )?
        {
            let pred = tupled_inputs_and_output
                .map_bound(|(inputs, output)| ty::ProjectionPredicate {
                    projection_ty: ecx
                        .tcx()
                        .mk_alias_ty(goal.predicate.def_id(), [goal.predicate.self_ty(), inputs]),
                    term: output.into(),
                })
                .to_predicate(ecx.tcx());
            Self::consider_assumption(ecx, goal, pred)
        } else {
            ecx.make_canonical_response(Certainty::Maybe(MaybeCause::Ambiguity))
        }
    }

    fn consider_builtin_tuple_candidate(
        _ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        bug!("`Tuple` does not have an associated type: {:?}", goal);
    }
}

/// This behavior is also implemented in `rustc_ty_utils` and in the old `project` code.
///
/// FIXME: We should merge these 3 implementations as it's likely that they otherwise
/// diverge.
#[instrument(level = "debug", skip(infcx, param_env), ret)]
fn fetch_eligible_assoc_item_def<'tcx>(
    infcx: &InferCtxt<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    goal_trait_ref: ty::TraitRef<'tcx>,
    trait_assoc_def_id: DefId,
    impl_def_id: DefId,
) -> Result<Option<LeafDef>, NoSolution> {
    let node_item = specialization_graph::assoc_def(infcx.tcx, impl_def_id, trait_assoc_def_id)
        .map_err(|ErrorGuaranteed { .. }| NoSolution)?;

    let eligible = if node_item.is_final() {
        // Non-specializable items are always projectable.
        true
    } else {
        // Only reveal a specializable default if we're past type-checking
        // and the obligation is monomorphic, otherwise passes such as
        // transmute checking and polymorphic MIR optimizations could
        // get a result which isn't correct for all monomorphizations.
        if param_env.reveal() == Reveal::All {
            let poly_trait_ref = infcx.resolve_vars_if_possible(goal_trait_ref);
            !poly_trait_ref.still_further_specializable()
        } else {
            debug!(?node_item.item.def_id, "not eligible due to default");
            false
        }
    };

    if eligible { Ok(Some(node_item)) } else { Ok(None) }
}