summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_trait_selection/src/solve/trait_goals.rs
blob: 5c499c36e9bf4686b239734410b73c21f2339fbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
//! Dealing with trait goals, i.e. `T: Trait<'a, U>`.

use std::iter;

use super::assembly;
use super::{CanonicalResponse, Certainty, EvalCtxt, Goal, QueryResult};
use rustc_hir::def_id::DefId;
use rustc_hir::LangItem;
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::util::supertraits;
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt};
use rustc_middle::ty::{TraitPredicate, TypeVisitableExt};
use rustc_span::DUMMY_SP;

pub mod structural_traits;

impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
    fn self_ty(self) -> Ty<'tcx> {
        self.self_ty()
    }

    fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
        self.with_self_ty(tcx, self_ty)
    }

    fn trait_def_id(self, _: TyCtxt<'tcx>) -> DefId {
        self.def_id()
    }

    fn consider_impl_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, TraitPredicate<'tcx>>,
        impl_def_id: DefId,
    ) -> QueryResult<'tcx> {
        let tcx = ecx.tcx();

        let impl_trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
        let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsPlaceholder };
        if iter::zip(goal.predicate.trait_ref.substs, impl_trait_ref.skip_binder().substs)
            .any(|(goal, imp)| !drcx.generic_args_may_unify(goal, imp))
        {
            return Err(NoSolution);
        }

        ecx.probe(|ecx| {
            let impl_substs = ecx.fresh_substs_for_item(impl_def_id);
            let impl_trait_ref = impl_trait_ref.subst(tcx, impl_substs);

            let mut nested_goals =
                ecx.eq(goal.param_env, goal.predicate.trait_ref, impl_trait_ref)?;
            let where_clause_bounds = tcx
                .predicates_of(impl_def_id)
                .instantiate(tcx, impl_substs)
                .predicates
                .into_iter()
                .map(|pred| goal.with(tcx, pred));
            nested_goals.extend(where_clause_bounds);
            ecx.evaluate_all_and_make_canonical_response(nested_goals)
        })
    }

    fn consider_implied_clause(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
        assumption: ty::Predicate<'tcx>,
        requirements: impl IntoIterator<Item = Goal<'tcx, ty::Predicate<'tcx>>>,
    ) -> QueryResult<'tcx> {
        if let Some(poly_trait_pred) = assumption.to_opt_poly_trait_pred()
            && poly_trait_pred.def_id() == goal.predicate.def_id()
        {
            // FIXME: Constness and polarity
            ecx.probe(|ecx| {
                let assumption_trait_pred =
                    ecx.instantiate_binder_with_infer(poly_trait_pred);
                let mut nested_goals = ecx.eq(
                    goal.param_env,
                    goal.predicate.trait_ref,
                    assumption_trait_pred.trait_ref,
                )?;
                nested_goals.extend(requirements);
                ecx.evaluate_all_and_make_canonical_response(nested_goals)
            })
        } else {
            Err(NoSolution)
        }
    }

    fn consider_object_bound_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
        assumption: ty::Predicate<'tcx>,
    ) -> QueryResult<'tcx> {
        if let Some(poly_trait_pred) = assumption.to_opt_poly_trait_pred()
            && poly_trait_pred.def_id() == goal.predicate.def_id()
        {
            // FIXME: Constness and polarity
            ecx.probe(|ecx| {
                let assumption_trait_pred =
                    ecx.instantiate_binder_with_infer(poly_trait_pred);
                let mut nested_goals = ecx.eq(
                    goal.param_env,
                    goal.predicate.trait_ref,
                    assumption_trait_pred.trait_ref,
                )?;

                let tcx = ecx.tcx();
                let ty::Dynamic(bounds, _, _) = *goal.predicate.self_ty().kind() else {
                    bug!("expected object type in `consider_object_bound_candidate`");
                };
                nested_goals.extend(
                    structural_traits::predicates_for_object_candidate(
                        ecx,
                        goal.param_env,
                        goal.predicate.trait_ref,
                        bounds,
                    )
                    .into_iter()
                    .map(|pred| goal.with(tcx, pred)),
                );

                ecx.evaluate_all_and_make_canonical_response(nested_goals)
            })
        } else {
            Err(NoSolution)
        }
    }

    fn consider_auto_trait_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        // This differs from the current stable behavior and
        // fixes #84857. Due to breakage found via crater, we
        // currently instead lint patterns which can be used to
        // exploit this unsoundness on stable, see #93367 for
        // more details.
        if let Some(def_id) = ecx.tcx().find_map_relevant_impl(
            goal.predicate.def_id(),
            goal.predicate.self_ty(),
            Some,
        ) {
            debug!(?def_id, ?goal, "disqualified auto-trait implementation");
            return Err(NoSolution);
        }

        ecx.probe_and_evaluate_goal_for_constituent_tys(
            goal,
            structural_traits::instantiate_constituent_tys_for_auto_trait,
        )
    }

    fn consider_trait_alias_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        let tcx = ecx.tcx();

        ecx.probe(|ecx| {
            let nested_obligations = tcx
                .predicates_of(goal.predicate.def_id())
                .instantiate(tcx, goal.predicate.trait_ref.substs);
            ecx.evaluate_all_and_make_canonical_response(
                nested_obligations.predicates.into_iter().map(|p| goal.with(tcx, p)).collect(),
            )
        })
    }

    fn consider_builtin_sized_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        ecx.probe_and_evaluate_goal_for_constituent_tys(
            goal,
            structural_traits::instantiate_constituent_tys_for_sized_trait,
        )
    }

    fn consider_builtin_copy_clone_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        ecx.probe_and_evaluate_goal_for_constituent_tys(
            goal,
            structural_traits::instantiate_constituent_tys_for_copy_clone_trait,
        )
    }

    fn consider_builtin_pointer_like_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        if goal.predicate.self_ty().has_non_region_infer() {
            return ecx.make_canonical_response(Certainty::AMBIGUOUS);
        }

        let tcx = ecx.tcx();
        let self_ty = tcx.erase_regions(goal.predicate.self_ty());

        if let Ok(layout) = tcx.layout_of(goal.param_env.and(self_ty))
            &&  let usize_layout = tcx.layout_of(ty::ParamEnv::empty().and(tcx.types.usize)).unwrap().layout
            && layout.layout.size() == usize_layout.size()
            && layout.layout.align().abi == usize_layout.align().abi
        {
            // FIXME: We could make this faster by making a no-constraints response
            ecx.make_canonical_response(Certainty::Yes)
        } else {
            Err(NoSolution)
        }
    }

    fn consider_builtin_fn_trait_candidates(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
        goal_kind: ty::ClosureKind,
    ) -> QueryResult<'tcx> {
        let tcx = ecx.tcx();
        let Some(tupled_inputs_and_output) =
            structural_traits::extract_tupled_inputs_and_output_from_callable(
                tcx,
                goal.predicate.self_ty(),
                goal_kind,
            )? else {
            return ecx.make_canonical_response(Certainty::AMBIGUOUS);
        };
        let output_is_sized_pred = tupled_inputs_and_output
            .map_bound(|(_, output)| tcx.at(DUMMY_SP).mk_trait_ref(LangItem::Sized, [output]));

        let pred = tupled_inputs_and_output
            .map_bound(|(inputs, _)| {
                tcx.mk_trait_ref(goal.predicate.def_id(), [goal.predicate.self_ty(), inputs])
            })
            .to_predicate(tcx);
        // A built-in `Fn` impl only holds if the output is sized.
        // (FIXME: technically we only need to check this if the type is a fn ptr...)
        Self::consider_implied_clause(ecx, goal, pred, [goal.with(tcx, output_is_sized_pred)])
    }

    fn consider_builtin_tuple_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        if let ty::Tuple(..) = goal.predicate.self_ty().kind() {
            ecx.make_canonical_response(Certainty::Yes)
        } else {
            Err(NoSolution)
        }
    }

    fn consider_builtin_pointee_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        _goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        ecx.make_canonical_response(Certainty::Yes)
    }

    fn consider_builtin_future_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        let ty::Generator(def_id, _, _) = *goal.predicate.self_ty().kind() else {
            return Err(NoSolution);
        };

        // Generators are not futures unless they come from `async` desugaring
        let tcx = ecx.tcx();
        if !tcx.generator_is_async(def_id) {
            return Err(NoSolution);
        }

        // Async generator unconditionally implement `Future`
        // Technically, we need to check that the future output type is Sized,
        // but that's already proven by the generator being WF.
        ecx.make_canonical_response(Certainty::Yes)
    }

    fn consider_builtin_generator_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        let self_ty = goal.predicate.self_ty();
        let ty::Generator(def_id, substs, _) = *self_ty.kind() else {
            return Err(NoSolution);
        };

        // `async`-desugared generators do not implement the generator trait
        let tcx = ecx.tcx();
        if tcx.generator_is_async(def_id) {
            return Err(NoSolution);
        }

        let generator = substs.as_generator();
        Self::consider_implied_clause(
            ecx,
            goal,
            ty::Binder::dummy(
                tcx.mk_trait_ref(goal.predicate.def_id(), [self_ty, generator.resume_ty()]),
            )
            .to_predicate(tcx),
            // Technically, we need to check that the generator types are Sized,
            // but that's already proven by the generator being WF.
            [],
        )
    }

    fn consider_builtin_unsize_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        let tcx = ecx.tcx();
        let a_ty = goal.predicate.self_ty();
        let b_ty = goal.predicate.trait_ref.substs.type_at(1);
        if b_ty.is_ty_var() {
            return ecx.make_canonical_response(Certainty::AMBIGUOUS);
        }
        ecx.probe(|ecx| {
            match (a_ty.kind(), b_ty.kind()) {
                // Trait upcasting, or `dyn Trait + Auto + 'a` -> `dyn Trait + 'b`
                (&ty::Dynamic(_, _, ty::Dyn), &ty::Dynamic(_, _, ty::Dyn)) => {
                    // Dyn upcasting is handled separately, since due to upcasting,
                    // when there are two supertraits that differ by substs, we
                    // may return more than one query response.
                    return Err(NoSolution);
                }
                // `T` -> `dyn Trait` unsizing
                (_, &ty::Dynamic(data, region, ty::Dyn)) => {
                    // Can only unsize to an object-safe type
                    if data
                        .principal_def_id()
                        .map_or(false, |def_id| !tcx.check_is_object_safe(def_id))
                    {
                        return Err(NoSolution);
                    }

                    let Some(sized_def_id) = tcx.lang_items().sized_trait() else {
                        return Err(NoSolution);
                    };
                    let nested_goals: Vec<_> = data
                        .iter()
                        // Check that the type implements all of the predicates of the def-id.
                        // (i.e. the principal, all of the associated types match, and any auto traits)
                        .map(|pred| goal.with(tcx, pred.with_self_ty(tcx, a_ty)))
                        .chain([
                            // The type must be Sized to be unsized.
                            goal.with(
                                tcx,
                                ty::Binder::dummy(tcx.mk_trait_ref(sized_def_id, [a_ty])),
                            ),
                            // The type must outlive the lifetime of the `dyn` we're unsizing into.
                            goal.with(tcx, ty::Binder::dummy(ty::OutlivesPredicate(a_ty, region))),
                        ])
                        .collect();

                    ecx.evaluate_all_and_make_canonical_response(nested_goals)
                }
                // `[T; n]` -> `[T]` unsizing
                (&ty::Array(a_elem_ty, ..), &ty::Slice(b_elem_ty)) => {
                    // We just require that the element type stays the same
                    let nested_goals = ecx.eq(goal.param_env, a_elem_ty, b_elem_ty)?;
                    ecx.evaluate_all_and_make_canonical_response(nested_goals)
                }
                // Struct unsizing `Struct<T>` -> `Struct<U>` where `T: Unsize<U>`
                (&ty::Adt(a_def, a_substs), &ty::Adt(b_def, b_substs))
                    if a_def.is_struct() && a_def.did() == b_def.did() =>
                {
                    let unsizing_params = tcx.unsizing_params_for_adt(a_def.did());
                    // We must be unsizing some type parameters. This also implies
                    // that the struct has a tail field.
                    if unsizing_params.is_empty() {
                        return Err(NoSolution);
                    }

                    let tail_field = a_def
                        .non_enum_variant()
                        .fields
                        .last()
                        .expect("expected unsized ADT to have a tail field");
                    let tail_field_ty = tcx.type_of(tail_field.did);

                    let a_tail_ty = tail_field_ty.subst(tcx, a_substs);
                    let b_tail_ty = tail_field_ty.subst(tcx, b_substs);

                    // Substitute just the unsizing params from B into A. The type after
                    // this substitution must be equal to B. This is so we don't unsize
                    // unrelated type parameters.
                    let new_a_substs =
                        tcx.mk_substs_from_iter(a_substs.iter().enumerate().map(|(i, a)| {
                            if unsizing_params.contains(i as u32) { b_substs[i] } else { a }
                        }));
                    let unsized_a_ty = tcx.mk_adt(a_def, new_a_substs);

                    // Finally, we require that `TailA: Unsize<TailB>` for the tail field
                    // types.
                    let mut nested_goals = ecx.eq(goal.param_env, unsized_a_ty, b_ty)?;
                    nested_goals.push(goal.with(
                        tcx,
                        ty::Binder::dummy(
                            tcx.mk_trait_ref(goal.predicate.def_id(), [a_tail_ty, b_tail_ty]),
                        ),
                    ));

                    ecx.evaluate_all_and_make_canonical_response(nested_goals)
                }
                // Tuple unsizing `(.., T)` -> `(.., U)` where `T: Unsize<U>`
                (&ty::Tuple(a_tys), &ty::Tuple(b_tys))
                    if a_tys.len() == b_tys.len() && !a_tys.is_empty() =>
                {
                    let (a_last_ty, a_rest_tys) = a_tys.split_last().unwrap();
                    let b_last_ty = b_tys.last().unwrap();

                    // Substitute just the tail field of B., and require that they're equal.
                    let unsized_a_ty =
                        tcx.mk_tup_from_iter(a_rest_tys.iter().chain([b_last_ty]).copied());
                    let mut nested_goals = ecx.eq(goal.param_env, unsized_a_ty, b_ty)?;

                    // Similar to ADTs, require that the rest of the fields are equal.
                    nested_goals.push(goal.with(
                        tcx,
                        ty::Binder::dummy(
                            tcx.mk_trait_ref(goal.predicate.def_id(), [*a_last_ty, *b_last_ty]),
                        ),
                    ));

                    ecx.evaluate_all_and_make_canonical_response(nested_goals)
                }
                _ => Err(NoSolution),
            }
        })
    }

    fn consider_builtin_dyn_upcast_candidates(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> Vec<CanonicalResponse<'tcx>> {
        let tcx = ecx.tcx();

        let a_ty = goal.predicate.self_ty();
        let b_ty = goal.predicate.trait_ref.substs.type_at(1);
        let ty::Dynamic(a_data, a_region, ty::Dyn) = *a_ty.kind() else {
            return vec![];
        };
        let ty::Dynamic(b_data, b_region, ty::Dyn) = *b_ty.kind() else {
            return vec![];
        };

        // All of a's auto traits need to be in b's auto traits.
        let auto_traits_compatible =
            b_data.auto_traits().all(|b| a_data.auto_traits().any(|a| a == b));
        if !auto_traits_compatible {
            return vec![];
        }

        let mut unsize_dyn_to_principal = |principal: Option<ty::PolyExistentialTraitRef<'tcx>>| {
            ecx.probe(|ecx| -> Result<_, NoSolution> {
                // Require that all of the trait predicates from A match B, except for
                // the auto traits. We do this by constructing a new A type with B's
                // auto traits, and equating these types.
                let new_a_data = principal
                    .into_iter()
                    .map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait))
                    .chain(a_data.iter().filter(|a| {
                        matches!(a.skip_binder(), ty::ExistentialPredicate::Projection(_))
                    }))
                    .chain(
                        b_data
                            .auto_traits()
                            .map(ty::ExistentialPredicate::AutoTrait)
                            .map(ty::Binder::dummy),
                    );
                let new_a_data = tcx.mk_poly_existential_predicates_from_iter(new_a_data);
                let new_a_ty = tcx.mk_dynamic(new_a_data, b_region, ty::Dyn);

                // We also require that A's lifetime outlives B's lifetime.
                let mut nested_obligations = ecx.eq(goal.param_env, new_a_ty, b_ty)?;
                nested_obligations.push(
                    goal.with(tcx, ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region))),
                );

                ecx.evaluate_all_and_make_canonical_response(nested_obligations)
            })
        };

        let mut responses = vec![];
        // If the principal def ids match (or are both none), then we're not doing
        // trait upcasting. We're just removing auto traits (or shortening the lifetime).
        if a_data.principal_def_id() == b_data.principal_def_id() {
            if let Ok(response) = unsize_dyn_to_principal(a_data.principal()) {
                responses.push(response);
            }
        } else if let Some(a_principal) = a_data.principal()
            && let Some(b_principal) = b_data.principal()
        {
            for super_trait_ref in supertraits(tcx, a_principal.with_self_ty(tcx, a_ty)) {
                if super_trait_ref.def_id() != b_principal.def_id() {
                    continue;
                }
                let erased_trait_ref = super_trait_ref
                    .map_bound(|trait_ref| ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref));
                if let Ok(response) = unsize_dyn_to_principal(Some(erased_trait_ref)) {
                    responses.push(response);
                }
            }
        }

        responses
    }

    fn consider_builtin_discriminant_kind_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        _goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx> {
        // `DiscriminantKind` is automatically implemented for every type.
        ecx.make_canonical_response(Certainty::Yes)
    }
}

impl<'tcx> EvalCtxt<'_, 'tcx> {
    /// Convenience function for traits that are structural, i.e. that only
    /// have nested subgoals that only change the self type. Unlike other
    /// evaluate-like helpers, this does a probe, so it doesn't need to be
    /// wrapped in one.
    fn probe_and_evaluate_goal_for_constituent_tys(
        &mut self,
        goal: Goal<'tcx, TraitPredicate<'tcx>>,
        constituent_tys: impl Fn(&EvalCtxt<'_, 'tcx>, Ty<'tcx>) -> Result<Vec<Ty<'tcx>>, NoSolution>,
    ) -> QueryResult<'tcx> {
        self.probe(|this| {
            this.evaluate_all_and_make_canonical_response(
                constituent_tys(this, goal.predicate.self_ty())?
                    .into_iter()
                    .map(|ty| {
                        goal.with(
                            this.tcx(),
                            ty::Binder::dummy(goal.predicate.with_self_ty(this.tcx(), ty)),
                        )
                    })
                    .collect(),
            )
        })
    }

    pub(super) fn compute_trait_goal(
        &mut self,
        goal: Goal<'tcx, TraitPredicate<'tcx>>,
    ) -> QueryResult<'tcx> {
        let candidates = self.assemble_and_evaluate_candidates(goal);
        self.merge_candidates_and_discard_reservation_impls(candidates)
    }
}