1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
|
//! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on
//! how this works.
//!
//! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
//! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html
use crate::infer::outlives::env::OutlivesEnvironment;
use crate::infer::{CombinedSnapshot, InferOk};
use crate::traits::outlives_bounds::InferCtxtExt as _;
use crate::traits::select::IntercrateAmbiguityCause;
use crate::traits::util::impl_subject_and_oblig;
use crate::traits::SkipLeakCheck;
use crate::traits::{
self, Normalized, Obligation, ObligationCause, ObligationCtxt, PredicateObligation,
PredicateObligations, SelectionContext,
};
use rustc_data_structures::fx::FxIndexSet;
use rustc_errors::Diagnostic;
use rustc_hir::def_id::{DefId, CRATE_DEF_ID, LOCAL_CRATE};
use rustc_hir::CRATE_HIR_ID;
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_infer::traits::util;
use rustc_middle::traits::specialization_graph::OverlapMode;
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
use rustc_middle::ty::visit::TypeVisitable;
use rustc_middle::ty::{self, ImplSubject, Ty, TyCtxt, TypeVisitor};
use rustc_span::symbol::sym;
use rustc_span::DUMMY_SP;
use std::fmt::Debug;
use std::iter;
use std::ops::ControlFlow;
/// Whether we do the orphan check relative to this crate or
/// to some remote crate.
#[derive(Copy, Clone, Debug)]
enum InCrate {
Local,
Remote,
}
#[derive(Debug, Copy, Clone)]
pub enum Conflict {
Upstream,
Downstream,
}
pub struct OverlapResult<'tcx> {
pub impl_header: ty::ImplHeader<'tcx>,
pub intercrate_ambiguity_causes: FxIndexSet<IntercrateAmbiguityCause>,
/// `true` if the overlap might've been permitted before the shift
/// to universes.
pub involves_placeholder: bool,
}
pub fn add_placeholder_note(err: &mut Diagnostic) {
err.note(
"this behavior recently changed as a result of a bug fix; \
see rust-lang/rust#56105 for details",
);
}
/// If there are types that satisfy both impls, returns `Some`
/// with a suitably-freshened `ImplHeader` with those types
/// substituted. Otherwise, returns `None`.
#[instrument(skip(tcx, skip_leak_check), level = "debug")]
pub fn overlapping_impls(
tcx: TyCtxt<'_>,
impl1_def_id: DefId,
impl2_def_id: DefId,
skip_leak_check: SkipLeakCheck,
overlap_mode: OverlapMode,
) -> Option<OverlapResult<'_>> {
// Before doing expensive operations like entering an inference context, do
// a quick check via fast_reject to tell if the impl headers could possibly
// unify.
let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsInfer };
let impl1_ref = tcx.impl_trait_ref(impl1_def_id);
let impl2_ref = tcx.impl_trait_ref(impl2_def_id);
let may_overlap = match (impl1_ref, impl2_ref) {
(Some(a), Some(b)) => iter::zip(a.substs, b.substs)
.all(|(arg1, arg2)| drcx.generic_args_may_unify(arg1, arg2)),
(None, None) => {
let self_ty1 = tcx.type_of(impl1_def_id);
let self_ty2 = tcx.type_of(impl2_def_id);
drcx.types_may_unify(self_ty1, self_ty2)
}
_ => bug!("unexpected impls: {impl1_def_id:?} {impl2_def_id:?}"),
};
if !may_overlap {
// Some types involved are definitely different, so the impls couldn't possibly overlap.
debug!("overlapping_impls: fast_reject early-exit");
return None;
}
let infcx = tcx.infer_ctxt().build();
let selcx = &mut SelectionContext::intercrate(&infcx);
let overlaps =
overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).is_some();
if !overlaps {
return None;
}
// In the case where we detect an error, run the check again, but
// this time tracking intercrate ambiguity causes for better
// diagnostics. (These take time and can lead to false errors.)
let infcx = tcx.infer_ctxt().build();
let selcx = &mut SelectionContext::intercrate(&infcx);
selcx.enable_tracking_intercrate_ambiguity_causes();
Some(overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).unwrap())
}
fn with_fresh_ty_vars<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
impl_def_id: DefId,
) -> ty::ImplHeader<'tcx> {
let tcx = selcx.tcx();
let impl_substs = selcx.infcx().fresh_substs_for_item(DUMMY_SP, impl_def_id);
let header = ty::ImplHeader {
impl_def_id,
self_ty: tcx.bound_type_of(impl_def_id).subst(tcx, impl_substs),
trait_ref: tcx.bound_impl_trait_ref(impl_def_id).map(|i| i.subst(tcx, impl_substs)),
predicates: tcx.predicates_of(impl_def_id).instantiate(tcx, impl_substs).predicates,
};
let Normalized { value: mut header, obligations } =
traits::normalize(selcx, param_env, ObligationCause::dummy(), header);
header.predicates.extend(obligations.into_iter().map(|o| o.predicate));
header
}
/// Can both impl `a` and impl `b` be satisfied by a common type (including
/// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls.
fn overlap<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
skip_leak_check: SkipLeakCheck,
impl1_def_id: DefId,
impl2_def_id: DefId,
overlap_mode: OverlapMode,
) -> Option<OverlapResult<'tcx>> {
debug!(
"overlap(impl1_def_id={:?}, impl2_def_id={:?}, overlap_mode={:?})",
impl1_def_id, impl2_def_id, overlap_mode
);
selcx.infcx().probe_maybe_skip_leak_check(skip_leak_check.is_yes(), |snapshot| {
overlap_within_probe(selcx, impl1_def_id, impl2_def_id, overlap_mode, snapshot)
})
}
fn overlap_within_probe<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
impl1_def_id: DefId,
impl2_def_id: DefId,
overlap_mode: OverlapMode,
snapshot: &CombinedSnapshot<'tcx>,
) -> Option<OverlapResult<'tcx>> {
let infcx = selcx.infcx();
if overlap_mode.use_negative_impl() {
if negative_impl(selcx, impl1_def_id, impl2_def_id)
|| negative_impl(selcx, impl2_def_id, impl1_def_id)
{
return None;
}
}
// For the purposes of this check, we don't bring any placeholder
// types into scope; instead, we replace the generic types with
// fresh type variables, and hence we do our evaluations in an
// empty environment.
let param_env = ty::ParamEnv::empty();
let impl1_header = with_fresh_ty_vars(selcx, param_env, impl1_def_id);
let impl2_header = with_fresh_ty_vars(selcx, param_env, impl2_def_id);
let obligations = equate_impl_headers(selcx, &impl1_header, &impl2_header)?;
debug!("overlap: unification check succeeded");
if overlap_mode.use_implicit_negative() {
if implicit_negative(selcx, param_env, &impl1_header, impl2_header, obligations) {
return None;
}
}
// We disable the leak when creating the `snapshot` by using
// `infcx.probe_maybe_disable_leak_check`.
if infcx.leak_check(true, snapshot).is_err() {
debug!("overlap: leak check failed");
return None;
}
let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes();
debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes);
let involves_placeholder =
matches!(selcx.infcx().region_constraints_added_in_snapshot(snapshot), Some(true));
let impl_header = selcx.infcx().resolve_vars_if_possible(impl1_header);
Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder })
}
fn equate_impl_headers<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
impl1_header: &ty::ImplHeader<'tcx>,
impl2_header: &ty::ImplHeader<'tcx>,
) -> Option<PredicateObligations<'tcx>> {
// Do `a` and `b` unify? If not, no overlap.
debug!("equate_impl_headers(impl1_header={:?}, impl2_header={:?}", impl1_header, impl2_header);
selcx
.infcx()
.at(&ObligationCause::dummy(), ty::ParamEnv::empty())
.eq_impl_headers(impl1_header, impl2_header)
.map(|infer_ok| infer_ok.obligations)
.ok()
}
/// Given impl1 and impl2 check if both impls can be satisfied by a common type (including
/// where-clauses) If so, return false, otherwise return true, they are disjoint.
fn implicit_negative<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
impl1_header: &ty::ImplHeader<'tcx>,
impl2_header: ty::ImplHeader<'tcx>,
obligations: PredicateObligations<'tcx>,
) -> bool {
// There's no overlap if obligations are unsatisfiable or if the obligation negated is
// satisfied.
//
// For example, given these two impl headers:
//
// `impl<'a> From<&'a str> for Box<dyn Error>`
// `impl<E> From<E> for Box<dyn Error> where E: Error`
//
// So we have:
//
// `Box<dyn Error>: From<&'?a str>`
// `Box<dyn Error>: From<?E>`
//
// After equating the two headers:
//
// `Box<dyn Error> = Box<dyn Error>`
// So, `?E = &'?a str` and then given the where clause `&'?a str: Error`.
//
// If the obligation `&'?a str: Error` holds, it means that there's overlap. If that doesn't
// hold we need to check if `&'?a str: !Error` holds, if doesn't hold there's overlap because
// at some point an impl for `&'?a str: Error` could be added.
debug!(
"implicit_negative(impl1_header={:?}, impl2_header={:?}, obligations={:?})",
impl1_header, impl2_header, obligations
);
let infcx = selcx.infcx();
let opt_failing_obligation = impl1_header
.predicates
.iter()
.copied()
.chain(impl2_header.predicates)
.map(|p| infcx.resolve_vars_if_possible(p))
.map(|p| Obligation {
cause: ObligationCause::dummy(),
param_env,
recursion_depth: 0,
predicate: p,
})
.chain(obligations)
.find(|o| !selcx.predicate_may_hold_fatal(o));
if let Some(failing_obligation) = opt_failing_obligation {
debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
true
} else {
false
}
}
/// Given impl1 and impl2 check if both impls are never satisfied by a common type (including
/// where-clauses) If so, return true, they are disjoint and false otherwise.
fn negative_impl<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
impl1_def_id: DefId,
impl2_def_id: DefId,
) -> bool {
debug!("negative_impl(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id);
let tcx = selcx.infcx().tcx;
// Create an infcx, taking the predicates of impl1 as assumptions:
let infcx = tcx.infer_ctxt().build();
// create a parameter environment corresponding to a (placeholder) instantiation of impl1
let impl_env = tcx.param_env(impl1_def_id);
let subject1 = match traits::fully_normalize(
&infcx,
ObligationCause::dummy(),
impl_env,
tcx.impl_subject(impl1_def_id),
) {
Ok(s) => s,
Err(err) => {
tcx.sess.delay_span_bug(
tcx.def_span(impl1_def_id),
format!("failed to fully normalize {:?}: {:?}", impl1_def_id, err),
);
return false;
}
};
// Attempt to prove that impl2 applies, given all of the above.
let selcx = &mut SelectionContext::new(&infcx);
let impl2_substs = infcx.fresh_substs_for_item(DUMMY_SP, impl2_def_id);
let (subject2, obligations) =
impl_subject_and_oblig(selcx, impl_env, impl2_def_id, impl2_substs);
!equate(&infcx, impl_env, subject1, subject2, obligations, impl1_def_id)
}
fn equate<'tcx>(
infcx: &InferCtxt<'tcx>,
impl_env: ty::ParamEnv<'tcx>,
subject1: ImplSubject<'tcx>,
subject2: ImplSubject<'tcx>,
obligations: impl Iterator<Item = PredicateObligation<'tcx>>,
body_def_id: DefId,
) -> bool {
// do the impls unify? If not, not disjoint.
let Ok(InferOk { obligations: more_obligations, .. }) =
infcx.at(&ObligationCause::dummy(), impl_env).eq(subject1, subject2)
else {
debug!("explicit_disjoint: {:?} does not unify with {:?}", subject1, subject2);
return true;
};
let selcx = &mut SelectionContext::new(&infcx);
let opt_failing_obligation = obligations
.into_iter()
.chain(more_obligations)
.find(|o| negative_impl_exists(selcx, o, body_def_id));
if let Some(failing_obligation) = opt_failing_obligation {
debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
false
} else {
true
}
}
/// Try to prove that a negative impl exist for the given obligation and its super predicates.
#[instrument(level = "debug", skip(selcx))]
fn negative_impl_exists<'cx, 'tcx>(
selcx: &SelectionContext<'cx, 'tcx>,
o: &PredicateObligation<'tcx>,
body_def_id: DefId,
) -> bool {
if resolve_negative_obligation(selcx.infcx().fork(), o, body_def_id) {
return true;
}
// Try to prove a negative obligation exists for super predicates
for o in util::elaborate_predicates(selcx.tcx(), iter::once(o.predicate)) {
if resolve_negative_obligation(selcx.infcx().fork(), &o, body_def_id) {
return true;
}
}
false
}
#[instrument(level = "debug", skip(infcx))]
fn resolve_negative_obligation<'tcx>(
infcx: InferCtxt<'tcx>,
o: &PredicateObligation<'tcx>,
body_def_id: DefId,
) -> bool {
let tcx = infcx.tcx;
let Some(o) = o.flip_polarity(tcx) else {
return false;
};
let param_env = o.param_env;
if !super::fully_solve_obligation(&infcx, o).is_empty() {
return false;
}
let (body_id, body_def_id) = if let Some(body_def_id) = body_def_id.as_local() {
(tcx.hir().local_def_id_to_hir_id(body_def_id), body_def_id)
} else {
(CRATE_HIR_ID, CRATE_DEF_ID)
};
let ocx = ObligationCtxt::new(&infcx);
let wf_tys = ocx.assumed_wf_types(param_env, DUMMY_SP, body_def_id);
let outlives_env = OutlivesEnvironment::with_bounds(
param_env,
Some(&infcx),
infcx.implied_bounds_tys(param_env, body_id, wf_tys),
);
infcx.process_registered_region_obligations(outlives_env.region_bound_pairs(), param_env);
infcx.resolve_regions(&outlives_env).is_empty()
}
pub fn trait_ref_is_knowable<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), Conflict> {
debug!("trait_ref_is_knowable(trait_ref={:?})", trait_ref);
if orphan_check_trait_ref(tcx, trait_ref, InCrate::Remote).is_ok() {
// A downstream or cousin crate is allowed to implement some
// substitution of this trait-ref.
return Err(Conflict::Downstream);
}
if trait_ref_is_local_or_fundamental(tcx, trait_ref) {
// This is a local or fundamental trait, so future-compatibility
// is no concern. We know that downstream/cousin crates are not
// allowed to implement a substitution of this trait ref, which
// means impls could only come from dependencies of this crate,
// which we already know about.
return Ok(());
}
// This is a remote non-fundamental trait, so if another crate
// can be the "final owner" of a substitution of this trait-ref,
// they are allowed to implement it future-compatibly.
//
// However, if we are a final owner, then nobody else can be,
// and if we are an intermediate owner, then we don't care
// about future-compatibility, which means that we're OK if
// we are an owner.
if orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok() {
debug!("trait_ref_is_knowable: orphan check passed");
Ok(())
} else {
debug!("trait_ref_is_knowable: nonlocal, nonfundamental, unowned");
Err(Conflict::Upstream)
}
}
pub fn trait_ref_is_local_or_fundamental<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
) -> bool {
trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental)
}
pub enum OrphanCheckErr<'tcx> {
NonLocalInputType(Vec<(Ty<'tcx>, bool /* Is this the first input type? */)>),
UncoveredTy(Ty<'tcx>, Option<Ty<'tcx>>),
}
/// Checks the coherence orphan rules. `impl_def_id` should be the
/// `DefId` of a trait impl. To pass, either the trait must be local, or else
/// two conditions must be satisfied:
///
/// 1. All type parameters in `Self` must be "covered" by some local type constructor.
/// 2. Some local type must appear in `Self`.
pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>> {
debug!("orphan_check({:?})", impl_def_id);
// We only except this routine to be invoked on implementations
// of a trait, not inherent implementations.
let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
debug!("orphan_check: trait_ref={:?}", trait_ref);
// If the *trait* is local to the crate, ok.
if trait_ref.def_id.is_local() {
debug!("trait {:?} is local to current crate", trait_ref.def_id);
return Ok(());
}
orphan_check_trait_ref(tcx, trait_ref, InCrate::Local)
}
/// Checks whether a trait-ref is potentially implementable by a crate.
///
/// The current rule is that a trait-ref orphan checks in a crate C:
///
/// 1. Order the parameters in the trait-ref in subst order - Self first,
/// others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
/// 2. Of these type parameters, there is at least one type parameter
/// in which, walking the type as a tree, you can reach a type local
/// to C where all types in-between are fundamental types. Call the
/// first such parameter the "local key parameter".
/// - e.g., `Box<LocalType>` is OK, because you can visit LocalType
/// going through `Box`, which is fundamental.
/// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
/// the same reason.
/// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
/// not local), `Vec<LocalType>` is bad, because `Vec<->` is between
/// the local type and the type parameter.
/// 3. Before this local type, no generic type parameter of the impl must
/// be reachable through fundamental types.
/// - e.g. `impl<T> Trait<LocalType> for Vec<T>` is fine, as `Vec` is not fundamental.
/// - while `impl<T> Trait<LocalType> for Box<T>` results in an error, as `T` is
/// reachable through the fundamental type `Box`.
/// 4. Every type in the local key parameter not known in C, going
/// through the parameter's type tree, must appear only as a subtree of
/// a type local to C, with only fundamental types between the type
/// local to C and the local key parameter.
/// - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
/// is bad, because the only local type with `T` as a subtree is
/// `LocalType<T>`, and `Vec<->` is between it and the type parameter.
/// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
/// the second occurrence of `T` is not a subtree of *any* local type.
/// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
/// `LocalType<Vec<T>>`, which is local and has no types between it and
/// the type parameter.
///
/// The orphan rules actually serve several different purposes:
///
/// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where
/// every type local to one crate is unknown in the other) can't implement
/// the same trait-ref. This follows because it can be seen that no such
/// type can orphan-check in 2 such crates.
///
/// To check that a local impl follows the orphan rules, we check it in
/// InCrate::Local mode, using type parameters for the "generic" types.
///
/// 2. They ground negative reasoning for coherence. If a user wants to
/// write both a conditional blanket impl and a specific impl, we need to
/// make sure they do not overlap. For example, if we write
/// ```ignore (illustrative)
/// impl<T> IntoIterator for Vec<T>
/// impl<T: Iterator> IntoIterator for T
/// ```
/// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0.
/// We can observe that this holds in the current crate, but we need to make
/// sure this will also hold in all unknown crates (both "independent" crates,
/// which we need for link-safety, and also child crates, because we don't want
/// child crates to get error for impl conflicts in a *dependency*).
///
/// For that, we only allow negative reasoning if, for every assignment to the
/// inference variables, every unknown crate would get an orphan error if they
/// try to implement this trait-ref. To check for this, we use InCrate::Remote
/// mode. That is sound because we already know all the impls from known crates.
///
/// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can
/// add "non-blanket" impls without breaking negative reasoning in dependent
/// crates. This is the "rebalancing coherence" (RFC 1023) restriction.
///
/// For that, we only a allow crate to perform negative reasoning on
/// non-local-non-`#[fundamental]` only if there's a local key parameter as per (2).
///
/// Because we never perform negative reasoning generically (coherence does
/// not involve type parameters), this can be interpreted as doing the full
/// orphan check (using InCrate::Local mode), substituting non-local known
/// types for all inference variables.
///
/// This allows for crates to future-compatibly add impls as long as they
/// can't apply to types with a key parameter in a child crate - applying
/// the rules, this basically means that every type parameter in the impl
/// must appear behind a non-fundamental type (because this is not a
/// type-system requirement, crate owners might also go for "semantic
/// future-compatibility" involving things such as sealed traits, but
/// the above requirement is sufficient, and is necessary in "open world"
/// cases).
///
/// Note that this function is never called for types that have both type
/// parameters and inference variables.
fn orphan_check_trait_ref<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
in_crate: InCrate,
) -> Result<(), OrphanCheckErr<'tcx>> {
debug!("orphan_check_trait_ref(trait_ref={:?}, in_crate={:?})", trait_ref, in_crate);
if trait_ref.needs_infer() && trait_ref.needs_subst() {
bug!(
"can't orphan check a trait ref with both params and inference variables {:?}",
trait_ref
);
}
let mut checker = OrphanChecker::new(tcx, in_crate);
match trait_ref.visit_with(&mut checker) {
ControlFlow::Continue(()) => Err(OrphanCheckErr::NonLocalInputType(checker.non_local_tys)),
ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(ty)) => {
// Does there exist some local type after the `ParamTy`.
checker.search_first_local_ty = true;
if let Some(OrphanCheckEarlyExit::LocalTy(local_ty)) =
trait_ref.visit_with(&mut checker).break_value()
{
Err(OrphanCheckErr::UncoveredTy(ty, Some(local_ty)))
} else {
Err(OrphanCheckErr::UncoveredTy(ty, None))
}
}
ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(_)) => Ok(()),
}
}
struct OrphanChecker<'tcx> {
tcx: TyCtxt<'tcx>,
in_crate: InCrate,
in_self_ty: bool,
/// Ignore orphan check failures and exclusively search for the first
/// local type.
search_first_local_ty: bool,
non_local_tys: Vec<(Ty<'tcx>, bool)>,
}
impl<'tcx> OrphanChecker<'tcx> {
fn new(tcx: TyCtxt<'tcx>, in_crate: InCrate) -> Self {
OrphanChecker {
tcx,
in_crate,
in_self_ty: true,
search_first_local_ty: false,
non_local_tys: Vec::new(),
}
}
fn found_non_local_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> {
self.non_local_tys.push((t, self.in_self_ty));
ControlFlow::CONTINUE
}
fn found_param_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> {
if self.search_first_local_ty {
ControlFlow::CONTINUE
} else {
ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(t))
}
}
fn def_id_is_local(&mut self, def_id: DefId) -> bool {
match self.in_crate {
InCrate::Local => def_id.is_local(),
InCrate::Remote => false,
}
}
}
enum OrphanCheckEarlyExit<'tcx> {
ParamTy(Ty<'tcx>),
LocalTy(Ty<'tcx>),
}
impl<'tcx> TypeVisitor<'tcx> for OrphanChecker<'tcx> {
type BreakTy = OrphanCheckEarlyExit<'tcx>;
fn visit_region(&mut self, _r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
ControlFlow::CONTINUE
}
fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
let result = match *ty.kind() {
ty::Bool
| ty::Char
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..)
| ty::Str
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::Array(..)
| ty::Slice(..)
| ty::RawPtr(..)
| ty::Never
| ty::Tuple(..)
| ty::Projection(..) => self.found_non_local_ty(ty),
ty::Param(..) => self.found_param_ty(ty),
ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match self.in_crate {
InCrate::Local => self.found_non_local_ty(ty),
// The inference variable might be unified with a local
// type in that remote crate.
InCrate::Remote => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
},
// For fundamental types, we just look inside of them.
ty::Ref(_, ty, _) => ty.visit_with(self),
ty::Adt(def, substs) => {
if self.def_id_is_local(def.did()) {
ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
} else if def.is_fundamental() {
substs.visit_with(self)
} else {
self.found_non_local_ty(ty)
}
}
ty::Foreign(def_id) => {
if self.def_id_is_local(def_id) {
ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
} else {
self.found_non_local_ty(ty)
}
}
ty::Dynamic(tt, ..) => {
let principal = tt.principal().map(|p| p.def_id());
if principal.map_or(false, |p| self.def_id_is_local(p)) {
ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
} else {
self.found_non_local_ty(ty)
}
}
ty::Error(_) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(..) => {
self.tcx.sess.delay_span_bug(
DUMMY_SP,
format!("ty_is_local invoked on closure or generator: {:?}", ty),
);
ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
}
ty::Opaque(..) => {
// This merits some explanation.
// Normally, opaque types are not involved when performing
// coherence checking, since it is illegal to directly
// implement a trait on an opaque type. However, we might
// end up looking at an opaque type during coherence checking
// if an opaque type gets used within another type (e.g. as
// the type of a field) when checking for auto trait or `Sized`
// impls. This requires us to decide whether or not an opaque
// type should be considered 'local' or not.
//
// We choose to treat all opaque types as non-local, even
// those that appear within the same crate. This seems
// somewhat surprising at first, but makes sense when
// you consider that opaque types are supposed to hide
// the underlying type *within the same crate*. When an
// opaque type is used from outside the module
// where it is declared, it should be impossible to observe
// anything about it other than the traits that it implements.
//
// The alternative would be to look at the underlying type
// to determine whether or not the opaque type itself should
// be considered local. However, this could make it a breaking change
// to switch the underlying ('defining') type from a local type
// to a remote type. This would violate the rule that opaque
// types should be completely opaque apart from the traits
// that they implement, so we don't use this behavior.
self.found_non_local_ty(ty)
}
};
// A bit of a hack, the `OrphanChecker` is only used to visit a `TraitRef`, so
// the first type we visit is always the self type.
self.in_self_ty = false;
result
}
/// All possible values for a constant parameter already exist
/// in the crate defining the trait, so they are always non-local[^1].
///
/// Because there's no way to have an impl where the first local
/// generic argument is a constant, we also don't have to fail
/// the orphan check when encountering a parameter or a generic constant.
///
/// This means that we can completely ignore constants during the orphan check.
///
/// See `src/test/ui/coherence/const-generics-orphan-check-ok.rs` for examples.
///
/// [^1]: This might not hold for function pointers or trait objects in the future.
/// As these should be quite rare as const arguments and especially rare as impl
/// parameters, allowing uncovered const parameters in impls seems more useful
/// than allowing `impl<T> Trait<local_fn_ptr, T> for i32` to compile.
fn visit_const(&mut self, _c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
ControlFlow::CONTINUE
}
}
|