1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
//! This is a copy of the `rustc_hash` crate, adapted to work as a module.
//!
//! If in the future it becomes more reasonable to add dependencies to
//! `proc_macro`, this module should be removed and replaced with a dependency
//! on the `rustc_hash` crate.
use std::collections::HashMap;
use std::convert::TryInto;
use std::default::Default;
use std::hash::BuildHasherDefault;
use std::hash::Hasher;
use std::mem::size_of;
use std::ops::BitXor;
/// Type alias for a hashmap using the `fx` hash algorithm.
pub type FxHashMap<K, V> = HashMap<K, V, BuildHasherDefault<FxHasher>>;
/// A speedy hash algorithm for use within rustc. The hashmap in liballoc
/// by default uses SipHash which isn't quite as speedy as we want. In the
/// compiler we're not really worried about DOS attempts, so we use a fast
/// non-cryptographic hash.
///
/// This is the same as the algorithm used by Firefox -- which is a homespun
/// one not based on any widely-known algorithm -- though modified to produce
/// 64-bit hash values instead of 32-bit hash values. It consistently
/// out-performs an FNV-based hash within rustc itself -- the collision rate is
/// similar or slightly worse than FNV, but the speed of the hash function
/// itself is much higher because it works on up to 8 bytes at a time.
pub struct FxHasher {
hash: usize,
}
#[cfg(target_pointer_width = "32")]
const K: usize = 0x9e3779b9;
#[cfg(target_pointer_width = "64")]
const K: usize = 0x517cc1b727220a95;
impl Default for FxHasher {
#[inline]
fn default() -> FxHasher {
FxHasher { hash: 0 }
}
}
impl FxHasher {
#[inline]
fn add_to_hash(&mut self, i: usize) {
self.hash = self.hash.rotate_left(5).bitxor(i).wrapping_mul(K);
}
}
impl Hasher for FxHasher {
#[inline]
fn write(&mut self, mut bytes: &[u8]) {
#[cfg(target_pointer_width = "32")]
let read_usize = |bytes: &[u8]| u32::from_ne_bytes(bytes[..4].try_into().unwrap());
#[cfg(target_pointer_width = "64")]
let read_usize = |bytes: &[u8]| u64::from_ne_bytes(bytes[..8].try_into().unwrap());
let mut hash = FxHasher { hash: self.hash };
assert!(size_of::<usize>() <= 8);
while bytes.len() >= size_of::<usize>() {
hash.add_to_hash(read_usize(bytes) as usize);
bytes = &bytes[size_of::<usize>()..];
}
if (size_of::<usize>() > 4) && (bytes.len() >= 4) {
hash.add_to_hash(u32::from_ne_bytes(bytes[..4].try_into().unwrap()) as usize);
bytes = &bytes[4..];
}
if (size_of::<usize>() > 2) && bytes.len() >= 2 {
hash.add_to_hash(u16::from_ne_bytes(bytes[..2].try_into().unwrap()) as usize);
bytes = &bytes[2..];
}
if (size_of::<usize>() > 1) && bytes.len() >= 1 {
hash.add_to_hash(bytes[0] as usize);
}
self.hash = hash.hash;
}
#[inline]
fn write_u8(&mut self, i: u8) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.add_to_hash(i as usize);
}
#[cfg(target_pointer_width = "32")]
#[inline]
fn write_u64(&mut self, i: u64) {
self.add_to_hash(i as usize);
self.add_to_hash((i >> 32) as usize);
}
#[cfg(target_pointer_width = "64")]
#[inline]
fn write_u64(&mut self, i: u64) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_usize(&mut self, i: usize) {
self.add_to_hash(i);
}
#[inline]
fn finish(&self) -> u64 {
self.hash as u64
}
}
|