summaryrefslogtreecommitdiffstats
path: root/library/std/src/sync/rwlock.rs
blob: 9ab781561e9b1280460d858bd36d737bfe5aa7e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;

use crate::cell::UnsafeCell;
use crate::fmt;
use crate::ops::{Deref, DerefMut};
use crate::ptr::NonNull;
use crate::sync::{poison, LockResult, TryLockError, TryLockResult};
use crate::sys_common::rwlock as sys;

/// A reader-writer lock
///
/// This type of lock allows a number of readers or at most one writer at any
/// point in time. The write portion of this lock typically allows modification
/// of the underlying data (exclusive access) and the read portion of this lock
/// typically allows for read-only access (shared access).
///
/// In comparison, a [`Mutex`] does not distinguish between readers or writers
/// that acquire the lock, therefore blocking any threads waiting for the lock to
/// become available. An `RwLock` will allow any number of readers to acquire the
/// lock as long as a writer is not holding the lock.
///
/// The priority policy of the lock is dependent on the underlying operating
/// system's implementation, and this type does not guarantee that any
/// particular policy will be used. In particular, a writer which is waiting to
/// acquire the lock in `write` might or might not block concurrent calls to
/// `read`, e.g.:
///
/// <details><summary>Potential deadlock example</summary>
///
/// ```text
/// // Thread 1             |  // Thread 2
/// let _rg = lock.read();  |
///                         |  // will block
///                         |  let _wg = lock.write();
/// // may deadlock         |
/// let _rg = lock.read();  |
/// ```
/// </details>
///
/// The type parameter `T` represents the data that this lock protects. It is
/// required that `T` satisfies [`Send`] to be shared across threads and
/// [`Sync`] to allow concurrent access through readers. The RAII guards
/// returned from the locking methods implement [`Deref`] (and [`DerefMut`]
/// for the `write` methods) to allow access to the content of the lock.
///
/// # Poisoning
///
/// An `RwLock`, like [`Mutex`], will become poisoned on a panic. Note, however,
/// that an `RwLock` may only be poisoned if a panic occurs while it is locked
/// exclusively (write mode). If a panic occurs in any reader, then the lock
/// will not be poisoned.
///
/// # Examples
///
/// ```
/// use std::sync::RwLock;
///
/// let lock = RwLock::new(5);
///
/// // many reader locks can be held at once
/// {
///     let r1 = lock.read().unwrap();
///     let r2 = lock.read().unwrap();
///     assert_eq!(*r1, 5);
///     assert_eq!(*r2, 5);
/// } // read locks are dropped at this point
///
/// // only one write lock may be held, however
/// {
///     let mut w = lock.write().unwrap();
///     *w += 1;
///     assert_eq!(*w, 6);
/// } // write lock is dropped here
/// ```
///
/// [`Mutex`]: super::Mutex
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RwLock<T: ?Sized> {
    inner: sys::MovableRwLock,
    poison: poison::Flag,
    data: UnsafeCell<T>,
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: ?Sized + Send> Send for RwLock<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: ?Sized + Send + Sync> Sync for RwLock<T> {}

/// RAII structure used to release the shared read access of a lock when
/// dropped.
///
/// This structure is created by the [`read`] and [`try_read`] methods on
/// [`RwLock`].
///
/// [`read`]: RwLock::read
/// [`try_read`]: RwLock::try_read
#[must_use = "if unused the RwLock will immediately unlock"]
#[must_not_suspend = "holding a RwLockReadGuard across suspend \
                      points can cause deadlocks, delays, \
                      and cause Futures to not implement `Send`"]
#[stable(feature = "rust1", since = "1.0.0")]
#[clippy::has_significant_drop]
#[cfg_attr(not(test), rustc_diagnostic_item = "RwLockReadGuard")]
pub struct RwLockReadGuard<'a, T: ?Sized + 'a> {
    // NB: we use a pointer instead of `&'a T` to avoid `noalias` violations, because a
    // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
    // `NonNull` is also covariant over `T`, just like we would have with `&T`. `NonNull`
    // is preferable over `const* T` to allow for niche optimization.
    data: NonNull<T>,
    inner_lock: &'a sys::MovableRwLock,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !Send for RwLockReadGuard<'_, T> {}

#[stable(feature = "rwlock_guard_sync", since = "1.23.0")]
unsafe impl<T: ?Sized + Sync> Sync for RwLockReadGuard<'_, T> {}

/// RAII structure used to release the exclusive write access of a lock when
/// dropped.
///
/// This structure is created by the [`write`] and [`try_write`] methods
/// on [`RwLock`].
///
/// [`write`]: RwLock::write
/// [`try_write`]: RwLock::try_write
#[must_use = "if unused the RwLock will immediately unlock"]
#[must_not_suspend = "holding a RwLockWriteGuard across suspend \
                      points can cause deadlocks, delays, \
                      and cause Future's to not implement `Send`"]
#[stable(feature = "rust1", since = "1.0.0")]
#[clippy::has_significant_drop]
#[cfg_attr(not(test), rustc_diagnostic_item = "RwLockWriteGuard")]
pub struct RwLockWriteGuard<'a, T: ?Sized + 'a> {
    lock: &'a RwLock<T>,
    poison: poison::Guard,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !Send for RwLockWriteGuard<'_, T> {}

#[stable(feature = "rwlock_guard_sync", since = "1.23.0")]
unsafe impl<T: ?Sized + Sync> Sync for RwLockWriteGuard<'_, T> {}

impl<T> RwLock<T> {
    /// Creates a new instance of an `RwLock<T>` which is unlocked.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::RwLock;
    ///
    /// let lock = RwLock::new(5);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_stable(feature = "const_locks", since = "1.63.0")]
    #[inline]
    pub const fn new(t: T) -> RwLock<T> {
        RwLock {
            inner: sys::MovableRwLock::new(),
            poison: poison::Flag::new(),
            data: UnsafeCell::new(t),
        }
    }
}

impl<T: ?Sized> RwLock<T> {
    /// Locks this rwlock with shared read access, blocking the current thread
    /// until it can be acquired.
    ///
    /// The calling thread will be blocked until there are no more writers which
    /// hold the lock. There may be other readers currently inside the lock when
    /// this method returns. This method does not provide any guarantees with
    /// respect to the ordering of whether contentious readers or writers will
    /// acquire the lock first.
    ///
    /// Returns an RAII guard which will release this thread's shared access
    /// once it is dropped.
    ///
    /// # Errors
    ///
    /// This function will return an error if the RwLock is poisoned. An RwLock
    /// is poisoned whenever a writer panics while holding an exclusive lock.
    /// The failure will occur immediately after the lock has been acquired.
    ///
    /// # Panics
    ///
    /// This function might panic when called if the lock is already held by the current thread.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::{Arc, RwLock};
    /// use std::thread;
    ///
    /// let lock = Arc::new(RwLock::new(1));
    /// let c_lock = Arc::clone(&lock);
    ///
    /// let n = lock.read().unwrap();
    /// assert_eq!(*n, 1);
    ///
    /// thread::spawn(move || {
    ///     let r = c_lock.read();
    ///     assert!(r.is_ok());
    /// }).join().unwrap();
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn read(&self) -> LockResult<RwLockReadGuard<'_, T>> {
        unsafe {
            self.inner.read();
            RwLockReadGuard::new(self)
        }
    }

    /// Attempts to acquire this rwlock with shared read access.
    ///
    /// If the access could not be granted at this time, then `Err` is returned.
    /// Otherwise, an RAII guard is returned which will release the shared access
    /// when it is dropped.
    ///
    /// This function does not block.
    ///
    /// This function does not provide any guarantees with respect to the ordering
    /// of whether contentious readers or writers will acquire the lock first.
    ///
    /// # Errors
    ///
    /// This function will return the [`Poisoned`] error if the RwLock is poisoned.
    /// An RwLock is poisoned whenever a writer panics while holding an exclusive
    /// lock. `Poisoned` will only be returned if the lock would have otherwise been
    /// acquired.
    ///
    /// This function will return the [`WouldBlock`] error if the RwLock could not
    /// be acquired because it was already locked exclusively.
    ///
    /// [`Poisoned`]: TryLockError::Poisoned
    /// [`WouldBlock`]: TryLockError::WouldBlock
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::RwLock;
    ///
    /// let lock = RwLock::new(1);
    ///
    /// match lock.try_read() {
    ///     Ok(n) => assert_eq!(*n, 1),
    ///     Err(_) => unreachable!(),
    /// };
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn try_read(&self) -> TryLockResult<RwLockReadGuard<'_, T>> {
        unsafe {
            if self.inner.try_read() {
                Ok(RwLockReadGuard::new(self)?)
            } else {
                Err(TryLockError::WouldBlock)
            }
        }
    }

    /// Locks this rwlock with exclusive write access, blocking the current
    /// thread until it can be acquired.
    ///
    /// This function will not return while other writers or other readers
    /// currently have access to the lock.
    ///
    /// Returns an RAII guard which will drop the write access of this rwlock
    /// when dropped.
    ///
    /// # Errors
    ///
    /// This function will return an error if the RwLock is poisoned. An RwLock
    /// is poisoned whenever a writer panics while holding an exclusive lock.
    /// An error will be returned when the lock is acquired.
    ///
    /// # Panics
    ///
    /// This function might panic when called if the lock is already held by the current thread.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::RwLock;
    ///
    /// let lock = RwLock::new(1);
    ///
    /// let mut n = lock.write().unwrap();
    /// *n = 2;
    ///
    /// assert!(lock.try_read().is_err());
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn write(&self) -> LockResult<RwLockWriteGuard<'_, T>> {
        unsafe {
            self.inner.write();
            RwLockWriteGuard::new(self)
        }
    }

    /// Attempts to lock this rwlock with exclusive write access.
    ///
    /// If the lock could not be acquired at this time, then `Err` is returned.
    /// Otherwise, an RAII guard is returned which will release the lock when
    /// it is dropped.
    ///
    /// This function does not block.
    ///
    /// This function does not provide any guarantees with respect to the ordering
    /// of whether contentious readers or writers will acquire the lock first.
    ///
    /// # Errors
    ///
    /// This function will return the [`Poisoned`] error if the RwLock is
    /// poisoned. An RwLock is poisoned whenever a writer panics while holding
    /// an exclusive lock. `Poisoned` will only be returned if the lock would have
    /// otherwise been acquired.
    ///
    /// This function will return the [`WouldBlock`] error if the RwLock could not
    /// be acquired because it was already locked exclusively.
    ///
    /// [`Poisoned`]: TryLockError::Poisoned
    /// [`WouldBlock`]: TryLockError::WouldBlock
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::RwLock;
    ///
    /// let lock = RwLock::new(1);
    ///
    /// let n = lock.read().unwrap();
    /// assert_eq!(*n, 1);
    ///
    /// assert!(lock.try_write().is_err());
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn try_write(&self) -> TryLockResult<RwLockWriteGuard<'_, T>> {
        unsafe {
            if self.inner.try_write() {
                Ok(RwLockWriteGuard::new(self)?)
            } else {
                Err(TryLockError::WouldBlock)
            }
        }
    }

    /// Determines whether the lock is poisoned.
    ///
    /// If another thread is active, the lock can still become poisoned at any
    /// time. You should not trust a `false` value for program correctness
    /// without additional synchronization.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::{Arc, RwLock};
    /// use std::thread;
    ///
    /// let lock = Arc::new(RwLock::new(0));
    /// let c_lock = Arc::clone(&lock);
    ///
    /// let _ = thread::spawn(move || {
    ///     let _lock = c_lock.write().unwrap();
    ///     panic!(); // the lock gets poisoned
    /// }).join();
    /// assert_eq!(lock.is_poisoned(), true);
    /// ```
    #[inline]
    #[stable(feature = "sync_poison", since = "1.2.0")]
    pub fn is_poisoned(&self) -> bool {
        self.poison.get()
    }

    /// Clear the poisoned state from a lock
    ///
    /// If the lock is poisoned, it will remain poisoned until this function is called. This allows
    /// recovering from a poisoned state and marking that it has recovered. For example, if the
    /// value is overwritten by a known-good value, then the mutex can be marked as un-poisoned. Or
    /// possibly, the value could be inspected to determine if it is in a consistent state, and if
    /// so the poison is removed.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(mutex_unpoison)]
    ///
    /// use std::sync::{Arc, RwLock};
    /// use std::thread;
    ///
    /// let lock = Arc::new(RwLock::new(0));
    /// let c_lock = Arc::clone(&lock);
    ///
    /// let _ = thread::spawn(move || {
    ///     let _lock = c_lock.write().unwrap();
    ///     panic!(); // the mutex gets poisoned
    /// }).join();
    ///
    /// assert_eq!(lock.is_poisoned(), true);
    /// let guard = lock.write().unwrap_or_else(|mut e| {
    ///     **e.get_mut() = 1;
    ///     lock.clear_poison();
    ///     e.into_inner()
    /// });
    /// assert_eq!(lock.is_poisoned(), false);
    /// assert_eq!(*guard, 1);
    /// ```
    #[inline]
    #[unstable(feature = "mutex_unpoison", issue = "96469")]
    pub fn clear_poison(&self) {
        self.poison.clear();
    }

    /// Consumes this `RwLock`, returning the underlying data.
    ///
    /// # Errors
    ///
    /// This function will return an error if the RwLock is poisoned. An RwLock
    /// is poisoned whenever a writer panics while holding an exclusive lock. An
    /// error will only be returned if the lock would have otherwise been
    /// acquired.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::RwLock;
    ///
    /// let lock = RwLock::new(String::new());
    /// {
    ///     let mut s = lock.write().unwrap();
    ///     *s = "modified".to_owned();
    /// }
    /// assert_eq!(lock.into_inner().unwrap(), "modified");
    /// ```
    #[stable(feature = "rwlock_into_inner", since = "1.6.0")]
    pub fn into_inner(self) -> LockResult<T>
    where
        T: Sized,
    {
        let data = self.data.into_inner();
        poison::map_result(self.poison.borrow(), |()| data)
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `RwLock` mutably, no actual locking needs to
    /// take place -- the mutable borrow statically guarantees no locks exist.
    ///
    /// # Errors
    ///
    /// This function will return an error if the RwLock is poisoned. An RwLock
    /// is poisoned whenever a writer panics while holding an exclusive lock. An
    /// error will only be returned if the lock would have otherwise been
    /// acquired.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::RwLock;
    ///
    /// let mut lock = RwLock::new(0);
    /// *lock.get_mut().unwrap() = 10;
    /// assert_eq!(*lock.read().unwrap(), 10);
    /// ```
    #[stable(feature = "rwlock_get_mut", since = "1.6.0")]
    pub fn get_mut(&mut self) -> LockResult<&mut T> {
        let data = self.data.get_mut();
        poison::map_result(self.poison.borrow(), |()| data)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for RwLock<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut d = f.debug_struct("RwLock");
        match self.try_read() {
            Ok(guard) => {
                d.field("data", &&*guard);
            }
            Err(TryLockError::Poisoned(err)) => {
                d.field("data", &&**err.get_ref());
            }
            Err(TryLockError::WouldBlock) => {
                struct LockedPlaceholder;
                impl fmt::Debug for LockedPlaceholder {
                    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                        f.write_str("<locked>")
                    }
                }
                d.field("data", &LockedPlaceholder);
            }
        }
        d.field("poisoned", &self.poison.get());
        d.finish_non_exhaustive()
    }
}

#[stable(feature = "rw_lock_default", since = "1.10.0")]
impl<T: Default> Default for RwLock<T> {
    /// Creates a new `RwLock<T>`, with the `Default` value for T.
    fn default() -> RwLock<T> {
        RwLock::new(Default::default())
    }
}

#[stable(feature = "rw_lock_from", since = "1.24.0")]
impl<T> From<T> for RwLock<T> {
    /// Creates a new instance of an `RwLock<T>` which is unlocked.
    /// This is equivalent to [`RwLock::new`].
    fn from(t: T) -> Self {
        RwLock::new(t)
    }
}

impl<'rwlock, T: ?Sized> RwLockReadGuard<'rwlock, T> {
    /// Create a new instance of `RwLockReadGuard<T>` from a `RwLock<T>`.
    // SAFETY: if and only if `lock.inner.read()` (or `lock.inner.try_read()`) has been
    // successfully called from the same thread before instantiating this object.
    unsafe fn new(lock: &'rwlock RwLock<T>) -> LockResult<RwLockReadGuard<'rwlock, T>> {
        poison::map_result(lock.poison.borrow(), |()| RwLockReadGuard {
            data: NonNull::new_unchecked(lock.data.get()),
            inner_lock: &lock.inner,
        })
    }
}

impl<'rwlock, T: ?Sized> RwLockWriteGuard<'rwlock, T> {
    /// Create a new instance of `RwLockWriteGuard<T>` from a `RwLock<T>`.
    // SAFETY: if and only if `lock.inner.write()` (or `lock.inner.try_write()`) has been
    // successfully called from the same thread before instantiating this object.
    unsafe fn new(lock: &'rwlock RwLock<T>) -> LockResult<RwLockWriteGuard<'rwlock, T>> {
        poison::map_result(lock.poison.guard(), |guard| RwLockWriteGuard { lock, poison: guard })
    }
}

#[stable(feature = "std_debug", since = "1.16.0")]
impl<T: fmt::Debug> fmt::Debug for RwLockReadGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[stable(feature = "std_guard_impls", since = "1.20.0")]
impl<T: ?Sized + fmt::Display> fmt::Display for RwLockReadGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[stable(feature = "std_debug", since = "1.16.0")]
impl<T: fmt::Debug> fmt::Debug for RwLockWriteGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[stable(feature = "std_guard_impls", since = "1.20.0")]
impl<T: ?Sized + fmt::Display> fmt::Display for RwLockWriteGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for RwLockReadGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        // SAFETY: the conditions of `RwLockGuard::new` were satisfied when created.
        unsafe { self.data.as_ref() }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for RwLockWriteGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when created.
        unsafe { &*self.lock.data.get() }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> DerefMut for RwLockWriteGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when created.
        unsafe { &mut *self.lock.data.get() }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Drop for RwLockReadGuard<'_, T> {
    fn drop(&mut self) {
        // SAFETY: the conditions of `RwLockReadGuard::new` were satisfied when created.
        unsafe {
            self.inner_lock.read_unlock();
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Drop for RwLockWriteGuard<'_, T> {
    fn drop(&mut self) {
        self.lock.poison.done(&self.poison);
        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when created.
        unsafe {
            self.lock.inner.write_unlock();
        }
    }
}