summaryrefslogtreecommitdiffstats
path: root/library/std/src/sys/unix/thread_parker.rs
blob: ca1a7138fded27f0b14f1c99c6f3fc0d0e501dc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
//! Thread parking without `futex` using the `pthread` synchronization primitives.

#![cfg(not(any(
    target_os = "linux",
    target_os = "android",
    all(target_os = "emscripten", target_feature = "atomics"),
    target_os = "freebsd",
    target_os = "openbsd",
    target_os = "dragonfly",
    target_os = "fuchsia",
)))]

use crate::cell::UnsafeCell;
use crate::marker::PhantomPinned;
use crate::pin::Pin;
use crate::ptr::addr_of_mut;
use crate::sync::atomic::AtomicUsize;
use crate::sync::atomic::Ordering::SeqCst;
use crate::time::Duration;

const EMPTY: usize = 0;
const PARKED: usize = 1;
const NOTIFIED: usize = 2;

unsafe fn lock(lock: *mut libc::pthread_mutex_t) {
    let r = libc::pthread_mutex_lock(lock);
    debug_assert_eq!(r, 0);
}

unsafe fn unlock(lock: *mut libc::pthread_mutex_t) {
    let r = libc::pthread_mutex_unlock(lock);
    debug_assert_eq!(r, 0);
}

unsafe fn notify_one(cond: *mut libc::pthread_cond_t) {
    let r = libc::pthread_cond_signal(cond);
    debug_assert_eq!(r, 0);
}

unsafe fn wait(cond: *mut libc::pthread_cond_t, lock: *mut libc::pthread_mutex_t) {
    let r = libc::pthread_cond_wait(cond, lock);
    debug_assert_eq!(r, 0);
}

const TIMESPEC_MAX: libc::timespec =
    libc::timespec { tv_sec: <libc::time_t>::MAX, tv_nsec: 1_000_000_000 - 1 };

unsafe fn wait_timeout(
    cond: *mut libc::pthread_cond_t,
    lock: *mut libc::pthread_mutex_t,
    dur: Duration,
) {
    // Use the system clock on systems that do not support pthread_condattr_setclock.
    // This unfortunately results in problems when the system time changes.
    #[cfg(any(
        target_os = "macos",
        target_os = "ios",
        target_os = "watchos",
        target_os = "espidf"
    ))]
    let (now, dur) = {
        use super::time::SystemTime;
        use crate::cmp::min;

        // OSX implementation of `pthread_cond_timedwait` is buggy
        // with super long durations. When duration is greater than
        // 0x100_0000_0000_0000 seconds, `pthread_cond_timedwait`
        // in macOS Sierra return error 316.
        //
        // This program demonstrates the issue:
        // https://gist.github.com/stepancheg/198db4623a20aad2ad7cddb8fda4a63c
        //
        // To work around this issue, and possible bugs of other OSes, timeout
        // is clamped to 1000 years, which is allowable per the API of `park_timeout`
        // because of spurious wakeups.
        let dur = min(dur, Duration::from_secs(1000 * 365 * 86400));
        let now = SystemTime::now().t;
        (now, dur)
    };
    // Use the monotonic clock on other systems.
    #[cfg(not(any(
        target_os = "macos",
        target_os = "ios",
        target_os = "watchos",
        target_os = "espidf"
    )))]
    let (now, dur) = {
        use super::time::Timespec;

        (Timespec::now(libc::CLOCK_MONOTONIC), dur)
    };

    let timeout =
        now.checked_add_duration(&dur).and_then(|t| t.to_timespec()).unwrap_or(TIMESPEC_MAX);
    let r = libc::pthread_cond_timedwait(cond, lock, &timeout);
    debug_assert!(r == libc::ETIMEDOUT || r == 0);
}

pub struct Parker {
    state: AtomicUsize,
    lock: UnsafeCell<libc::pthread_mutex_t>,
    cvar: UnsafeCell<libc::pthread_cond_t>,
    // The `pthread` primitives require a stable address, so make this struct `!Unpin`.
    _pinned: PhantomPinned,
}

impl Parker {
    /// Construct the UNIX parker in-place.
    ///
    /// # Safety
    /// The constructed parker must never be moved.
    pub unsafe fn new(parker: *mut Parker) {
        // Use the default mutex implementation to allow for simpler initialization.
        // This could lead to undefined behaviour when deadlocking. This is avoided
        // by not deadlocking. Note in particular the unlocking operation before any
        // panic, as code after the panic could try to park again.
        addr_of_mut!((*parker).state).write(AtomicUsize::new(EMPTY));
        addr_of_mut!((*parker).lock).write(UnsafeCell::new(libc::PTHREAD_MUTEX_INITIALIZER));

        cfg_if::cfg_if! {
            if #[cfg(any(
                target_os = "macos",
                target_os = "ios",
                target_os = "watchos",
                target_os = "l4re",
                target_os = "android",
                target_os = "redox"
            ))] {
                addr_of_mut!((*parker).cvar).write(UnsafeCell::new(libc::PTHREAD_COND_INITIALIZER));
            } else if #[cfg(any(target_os = "espidf", target_os = "horizon"))] {
                let r = libc::pthread_cond_init(addr_of_mut!((*parker).cvar).cast(), crate::ptr::null());
                assert_eq!(r, 0);
            } else {
                use crate::mem::MaybeUninit;
                let mut attr = MaybeUninit::<libc::pthread_condattr_t>::uninit();
                let r = libc::pthread_condattr_init(attr.as_mut_ptr());
                assert_eq!(r, 0);
                let r = libc::pthread_condattr_setclock(attr.as_mut_ptr(), libc::CLOCK_MONOTONIC);
                assert_eq!(r, 0);
                let r = libc::pthread_cond_init(addr_of_mut!((*parker).cvar).cast(), attr.as_ptr());
                assert_eq!(r, 0);
                let r = libc::pthread_condattr_destroy(attr.as_mut_ptr());
                assert_eq!(r, 0);
            }
        }
    }

    // This implementation doesn't require `unsafe`, but other implementations
    // may assume this is only called by the thread that owns the Parker.
    pub unsafe fn park(self: Pin<&Self>) {
        // If we were previously notified then we consume this notification and
        // return quickly.
        if self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst).is_ok() {
            return;
        }

        // Otherwise we need to coordinate going to sleep
        lock(self.lock.get());
        match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
            Ok(_) => {}
            Err(NOTIFIED) => {
                // We must read here, even though we know it will be `NOTIFIED`.
                // This is because `unpark` may have been called again since we read
                // `NOTIFIED` in the `compare_exchange` above. We must perform an
                // acquire operation that synchronizes with that `unpark` to observe
                // any writes it made before the call to unpark. To do that we must
                // read from the write it made to `state`.
                let old = self.state.swap(EMPTY, SeqCst);

                unlock(self.lock.get());

                assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
                return;
            } // should consume this notification, so prohibit spurious wakeups in next park.
            Err(_) => {
                unlock(self.lock.get());

                panic!("inconsistent park state")
            }
        }

        loop {
            wait(self.cvar.get(), self.lock.get());

            match self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst) {
                Ok(_) => break, // got a notification
                Err(_) => {}    // spurious wakeup, go back to sleep
            }
        }

        unlock(self.lock.get());
    }

    // This implementation doesn't require `unsafe`, but other implementations
    // may assume this is only called by the thread that owns the Parker. Use
    // `Pin` to guarantee a stable address for the mutex and condition variable.
    pub unsafe fn park_timeout(self: Pin<&Self>, dur: Duration) {
        // Like `park` above we have a fast path for an already-notified thread, and
        // afterwards we start coordinating for a sleep.
        // return quickly.
        if self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst).is_ok() {
            return;
        }

        lock(self.lock.get());
        match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
            Ok(_) => {}
            Err(NOTIFIED) => {
                // We must read again here, see `park`.
                let old = self.state.swap(EMPTY, SeqCst);
                unlock(self.lock.get());

                assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
                return;
            } // should consume this notification, so prohibit spurious wakeups in next park.
            Err(_) => {
                unlock(self.lock.get());
                panic!("inconsistent park_timeout state")
            }
        }

        // Wait with a timeout, and if we spuriously wake up or otherwise wake up
        // from a notification we just want to unconditionally set the state back to
        // empty, either consuming a notification or un-flagging ourselves as
        // parked.
        wait_timeout(self.cvar.get(), self.lock.get(), dur);

        match self.state.swap(EMPTY, SeqCst) {
            NOTIFIED => unlock(self.lock.get()), // got a notification, hurray!
            PARKED => unlock(self.lock.get()),   // no notification, alas
            n => {
                unlock(self.lock.get());
                panic!("inconsistent park_timeout state: {n}")
            }
        }
    }

    pub fn unpark(self: Pin<&Self>) {
        // To ensure the unparked thread will observe any writes we made
        // before this call, we must perform a release operation that `park`
        // can synchronize with. To do that we must write `NOTIFIED` even if
        // `state` is already `NOTIFIED`. That is why this must be a swap
        // rather than a compare-and-swap that returns if it reads `NOTIFIED`
        // on failure.
        match self.state.swap(NOTIFIED, SeqCst) {
            EMPTY => return,    // no one was waiting
            NOTIFIED => return, // already unparked
            PARKED => {}        // gotta go wake someone up
            _ => panic!("inconsistent state in unpark"),
        }

        // There is a period between when the parked thread sets `state` to
        // `PARKED` (or last checked `state` in the case of a spurious wake
        // up) and when it actually waits on `cvar`. If we were to notify
        // during this period it would be ignored and then when the parked
        // thread went to sleep it would never wake up. Fortunately, it has
        // `lock` locked at this stage so we can acquire `lock` to wait until
        // it is ready to receive the notification.
        //
        // Releasing `lock` before the call to `notify_one` means that when the
        // parked thread wakes it doesn't get woken only to have to wait for us
        // to release `lock`.
        unsafe {
            lock(self.lock.get());
            unlock(self.lock.get());
            notify_one(self.cvar.get());
        }
    }
}

impl Drop for Parker {
    fn drop(&mut self) {
        unsafe {
            libc::pthread_cond_destroy(self.cvar.get_mut());
            libc::pthread_mutex_destroy(self.lock.get_mut());
        }
    }
}

unsafe impl Sync for Parker {}
unsafe impl Send for Parker {}