1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
//! A "compatibility layer" for supporting older versions of Windows
//!
//! The standard library uses some Windows API functions that are not present
//! on older versions of Windows. (Note that the oldest version of Windows
//! that Rust supports is Windows 7 (client) and Windows Server 2008 (server).)
//! This module implements a form of delayed DLL import binding, using
//! `GetModuleHandle` and `GetProcAddress` to look up DLL entry points at
//! runtime.
//!
//! This is implemented simply by storing a function pointer in an atomic.
//! Loading and calling this function will have little or no overhead
//! compared with calling any other dynamically imported function.
//!
//! The stored function pointer starts out as an importer function which will
//! swap itself with the real function when it's called for the first time. If
//! the real function can't be imported then a fallback function is used in its
//! place. While this is low cost for the happy path (where the function is
//! already loaded) it does mean there's some overhead the first time the
//! function is called. In the worst case, multiple threads may all end up
//! importing the same function unnecessarily.
use crate::ffi::{c_void, CStr};
use crate::ptr::NonNull;
use crate::sync::atomic::Ordering;
use crate::sys::c;
// This uses a static initializer to preload some imported functions.
// The CRT (C runtime) executes static initializers before `main`
// is called (for binaries) and before `DllMain` is called (for DLLs).
//
// It works by contributing a global symbol to the `.CRT$XCT` section.
// The linker builds a table of all static initializer functions.
// The CRT startup code then iterates that table, calling each
// initializer function.
//
// NOTE: User code should instead use .CRT$XCU to reliably run after std's initializer.
// If you're reading this and would like a guarantee here, please
// file an issue for discussion; currently we don't guarantee any functionality
// before main.
// See https://docs.microsoft.com/en-us/cpp/c-runtime-library/crt-initialization?view=msvc-170
#[used]
#[link_section = ".CRT$XCT"]
static INIT_TABLE_ENTRY: unsafe extern "C" fn() = init;
/// Preload some imported functions.
///
/// Note that any functions included here will be unconditionally loaded in
/// the final binary, regardless of whether or not they're actually used.
///
/// Therefore, this should be limited to `compat_fn_optional` functions which
/// must be preloaded or any functions where lazier loading demonstrates a
/// negative performance impact in practical situations.
///
/// Currently we only preload `WaitOnAddress` and `WakeByAddressSingle`.
unsafe extern "C" fn init() {
// In an exe this code is executed before main() so is single threaded.
// In a DLL the system's loader lock will be held thereby synchronizing
// access. So the same best practices apply here as they do to running in DllMain:
// https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-best-practices
//
// DO NOT do anything interesting or complicated in this function! DO NOT call
// any Rust functions or CRT functions if those functions touch any global state,
// because this function runs during global initialization. For example, DO NOT
// do any dynamic allocation, don't call LoadLibrary, etc.
// Attempt to preload the synch functions.
load_synch_functions();
}
/// Helper macro for creating CStrs from literals and symbol names.
macro_rules! ansi_str {
(sym $ident:ident) => {{
#[allow(unused_unsafe)]
crate::sys::compat::const_cstr_from_bytes(concat!(stringify!($ident), "\0").as_bytes())
}};
($lit:literal) => {{ crate::sys::compat::const_cstr_from_bytes(concat!($lit, "\0").as_bytes()) }};
}
/// Creates a C string wrapper from a byte slice, in a constant context.
///
/// This is a utility function used by the [`ansi_str`] macro.
///
/// # Panics
///
/// Panics if the slice is not null terminated or contains nulls, except as the last item
pub(crate) const fn const_cstr_from_bytes(bytes: &'static [u8]) -> &'static CStr {
if !matches!(bytes.last(), Some(&0)) {
panic!("A CStr must be null terminated");
}
let mut i = 0;
// At this point `len()` is at least 1.
while i < bytes.len() - 1 {
if bytes[i] == 0 {
panic!("A CStr must not have interior nulls")
}
i += 1;
}
// SAFETY: The safety is ensured by the above checks.
unsafe { crate::ffi::CStr::from_bytes_with_nul_unchecked(bytes) }
}
/// Represents a loaded module.
///
/// Note that the modules std depends on must not be unloaded.
/// Therefore a `Module` is always valid for the lifetime of std.
#[derive(Copy, Clone)]
pub(in crate::sys) struct Module(NonNull<c_void>);
impl Module {
/// Try to get a handle to a loaded module.
///
/// # SAFETY
///
/// This should only be use for modules that exist for the lifetime of std
/// (e.g. kernel32 and ntdll).
pub unsafe fn new(name: &CStr) -> Option<Self> {
// SAFETY: A CStr is always null terminated.
let module = c::GetModuleHandleA(name.as_ptr());
NonNull::new(module).map(Self)
}
// Try to get the address of a function.
pub fn proc_address(self, name: &CStr) -> Option<NonNull<c_void>> {
// SAFETY:
// `self.0` will always be a valid module.
// A CStr is always null terminated.
let proc = unsafe { c::GetProcAddress(self.0.as_ptr(), name.as_ptr()) };
NonNull::new(proc)
}
}
/// Load a function or use a fallback implementation if that fails.
macro_rules! compat_fn_with_fallback {
(pub static $module:ident: &CStr = $name:expr; $(
$(#[$meta:meta])*
$vis:vis fn $symbol:ident($($argname:ident: $argtype:ty),*) -> $rettype:ty $fallback_body:block
)*) => (
pub static $module: &CStr = $name;
$(
$(#[$meta])*
pub mod $symbol {
#[allow(unused_imports)]
use super::*;
use crate::mem;
use crate::ffi::CStr;
use crate::sync::atomic::{AtomicPtr, Ordering};
use crate::sys::compat::Module;
type F = unsafe extern "system" fn($($argtype),*) -> $rettype;
/// `PTR` contains a function pointer to one of three functions.
/// It starts with the `load` function.
/// When that is called it attempts to load the requested symbol.
/// If it succeeds, `PTR` is set to the address of that symbol.
/// If it fails, then `PTR` is set to `fallback`.
static PTR: AtomicPtr<c_void> = AtomicPtr::new(load as *mut _);
unsafe extern "system" fn load($($argname: $argtype),*) -> $rettype {
let func = load_from_module(Module::new($module));
func($($argname),*)
}
fn load_from_module(module: Option<Module>) -> F {
unsafe {
static SYMBOL_NAME: &CStr = ansi_str!(sym $symbol);
if let Some(f) = module.and_then(|m| m.proc_address(SYMBOL_NAME)) {
PTR.store(f.as_ptr(), Ordering::Relaxed);
mem::transmute(f)
} else {
PTR.store(fallback as *mut _, Ordering::Relaxed);
fallback
}
}
}
#[allow(unused_variables)]
unsafe extern "system" fn fallback($($argname: $argtype),*) -> $rettype {
$fallback_body
}
#[inline(always)]
pub unsafe fn call($($argname: $argtype),*) -> $rettype {
let func: F = mem::transmute(PTR.load(Ordering::Relaxed));
func($($argname),*)
}
}
$(#[$meta])*
$vis use $symbol::call as $symbol;
)*)
}
/// Optionally loaded functions.
///
/// Actual loading of the function defers to $load_functions.
macro_rules! compat_fn_optional {
($load_functions:expr;
$(
$(#[$meta:meta])*
$vis:vis fn $symbol:ident($($argname:ident: $argtype:ty),*) $(-> $rettype:ty)?;
)+) => (
$(
pub mod $symbol {
use super::*;
use crate::ffi::c_void;
use crate::mem;
use crate::ptr::{self, NonNull};
use crate::sync::atomic::{AtomicPtr, Ordering};
pub(in crate::sys) static PTR: AtomicPtr<c_void> = AtomicPtr::new(ptr::null_mut());
type F = unsafe extern "system" fn($($argtype),*) $(-> $rettype)?;
#[inline(always)]
pub fn option() -> Option<F> {
// Miri does not understand the way we do preloading
// therefore load the function here instead.
#[cfg(miri)] $load_functions;
NonNull::new(PTR.load(Ordering::Relaxed)).map(|f| unsafe { mem::transmute(f) })
}
}
)+
)
}
/// Load all needed functions from "api-ms-win-core-synch-l1-2-0".
pub(super) fn load_synch_functions() {
fn try_load() -> Option<()> {
const MODULE_NAME: &CStr = ansi_str!("api-ms-win-core-synch-l1-2-0");
const WAIT_ON_ADDRESS: &CStr = ansi_str!("WaitOnAddress");
const WAKE_BY_ADDRESS_SINGLE: &CStr = ansi_str!("WakeByAddressSingle");
// Try loading the library and all the required functions.
// If any step fails, then they all fail.
let library = unsafe { Module::new(MODULE_NAME) }?;
let wait_on_address = library.proc_address(WAIT_ON_ADDRESS)?;
let wake_by_address_single = library.proc_address(WAKE_BY_ADDRESS_SINGLE)?;
c::WaitOnAddress::PTR.store(wait_on_address.as_ptr(), Ordering::Relaxed);
c::WakeByAddressSingle::PTR.store(wake_by_address_single.as_ptr(), Ordering::Relaxed);
Some(())
}
try_load();
}
|