1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
#![unstable(issue = "none", feature = "windows_handle")]
#[cfg(test)]
mod tests;
use crate::cmp;
use crate::io::{self, ErrorKind, IoSlice, IoSliceMut, Read, ReadBuf};
use crate::mem;
use crate::os::windows::io::{
AsHandle, AsRawHandle, BorrowedHandle, FromRawHandle, IntoRawHandle, OwnedHandle, RawHandle,
};
use crate::ptr;
use crate::sys::c;
use crate::sys::cvt;
use crate::sys_common::{AsInner, FromInner, IntoInner};
/// An owned container for `HANDLE` object, closing them on Drop.
///
/// All methods are inherited through a `Deref` impl to `RawHandle`
pub struct Handle(OwnedHandle);
impl Handle {
pub fn new_event(manual: bool, init: bool) -> io::Result<Handle> {
unsafe {
let event =
c::CreateEventW(ptr::null_mut(), manual as c::BOOL, init as c::BOOL, ptr::null());
if event.is_null() {
Err(io::Error::last_os_error())
} else {
Ok(Handle::from_raw_handle(event))
}
}
}
}
impl AsInner<OwnedHandle> for Handle {
fn as_inner(&self) -> &OwnedHandle {
&self.0
}
}
impl IntoInner<OwnedHandle> for Handle {
fn into_inner(self) -> OwnedHandle {
self.0
}
}
impl FromInner<OwnedHandle> for Handle {
fn from_inner(file_desc: OwnedHandle) -> Self {
Self(file_desc)
}
}
impl AsHandle for Handle {
fn as_handle(&self) -> BorrowedHandle<'_> {
self.0.as_handle()
}
}
impl AsRawHandle for Handle {
fn as_raw_handle(&self) -> RawHandle {
self.0.as_raw_handle()
}
}
impl IntoRawHandle for Handle {
fn into_raw_handle(self) -> RawHandle {
self.0.into_raw_handle()
}
}
impl FromRawHandle for Handle {
unsafe fn from_raw_handle(raw_handle: RawHandle) -> Self {
Self(FromRawHandle::from_raw_handle(raw_handle))
}
}
impl Handle {
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
let res = unsafe { self.synchronous_read(buf.as_mut_ptr().cast(), buf.len(), None) };
match res {
Ok(read) => Ok(read as usize),
// The special treatment of BrokenPipe is to deal with Windows
// pipe semantics, which yields this error when *reading* from
// a pipe after the other end has closed; we interpret that as
// EOF on the pipe.
Err(ref e) if e.kind() == ErrorKind::BrokenPipe => Ok(0),
Err(e) => Err(e),
}
}
pub fn read_vectored(&self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
crate::io::default_read_vectored(|buf| self.read(buf), bufs)
}
#[inline]
pub fn is_read_vectored(&self) -> bool {
false
}
pub fn read_at(&self, buf: &mut [u8], offset: u64) -> io::Result<usize> {
let res =
unsafe { self.synchronous_read(buf.as_mut_ptr().cast(), buf.len(), Some(offset)) };
match res {
Ok(read) => Ok(read as usize),
Err(ref e) if e.raw_os_error() == Some(c::ERROR_HANDLE_EOF as i32) => Ok(0),
Err(e) => Err(e),
}
}
pub fn read_buf(&self, buf: &mut ReadBuf<'_>) -> io::Result<()> {
let res = unsafe {
self.synchronous_read(buf.unfilled_mut().as_mut_ptr(), buf.remaining(), None)
};
match res {
Ok(read) => {
// Safety: `read` bytes were written to the initialized portion of the buffer
unsafe {
buf.assume_init(read as usize);
}
buf.add_filled(read as usize);
Ok(())
}
// The special treatment of BrokenPipe is to deal with Windows
// pipe semantics, which yields this error when *reading* from
// a pipe after the other end has closed; we interpret that as
// EOF on the pipe.
Err(ref e) if e.kind() == ErrorKind::BrokenPipe => Ok(()),
Err(e) => Err(e),
}
}
pub unsafe fn read_overlapped(
&self,
buf: &mut [u8],
overlapped: *mut c::OVERLAPPED,
) -> io::Result<Option<usize>> {
let len = cmp::min(buf.len(), <c::DWORD>::MAX as usize) as c::DWORD;
let mut amt = 0;
let res = cvt(c::ReadFile(
self.as_handle(),
buf.as_ptr() as c::LPVOID,
len,
&mut amt,
overlapped,
));
match res {
Ok(_) => Ok(Some(amt as usize)),
Err(e) => {
if e.raw_os_error() == Some(c::ERROR_IO_PENDING as i32) {
Ok(None)
} else if e.raw_os_error() == Some(c::ERROR_BROKEN_PIPE as i32) {
Ok(Some(0))
} else {
Err(e)
}
}
}
}
pub fn overlapped_result(
&self,
overlapped: *mut c::OVERLAPPED,
wait: bool,
) -> io::Result<usize> {
unsafe {
let mut bytes = 0;
let wait = if wait { c::TRUE } else { c::FALSE };
let res =
cvt(c::GetOverlappedResult(self.as_raw_handle(), overlapped, &mut bytes, wait));
match res {
Ok(_) => Ok(bytes as usize),
Err(e) => {
if e.raw_os_error() == Some(c::ERROR_HANDLE_EOF as i32)
|| e.raw_os_error() == Some(c::ERROR_BROKEN_PIPE as i32)
{
Ok(0)
} else {
Err(e)
}
}
}
}
}
pub fn cancel_io(&self) -> io::Result<()> {
unsafe { cvt(c::CancelIo(self.as_raw_handle())).map(drop) }
}
pub fn write(&self, buf: &[u8]) -> io::Result<usize> {
self.synchronous_write(&buf, None)
}
pub fn write_vectored(&self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
crate::io::default_write_vectored(|buf| self.write(buf), bufs)
}
#[inline]
pub fn is_write_vectored(&self) -> bool {
false
}
pub fn write_at(&self, buf: &[u8], offset: u64) -> io::Result<usize> {
self.synchronous_write(&buf, Some(offset))
}
pub fn try_clone(&self) -> io::Result<Self> {
Ok(Self(self.0.try_clone()?))
}
pub fn duplicate(
&self,
access: c::DWORD,
inherit: bool,
options: c::DWORD,
) -> io::Result<Self> {
Ok(Self(self.0.as_handle().duplicate(access, inherit, options)?))
}
/// Performs a synchronous read.
///
/// If the handle is opened for asynchronous I/O then this abort the process.
/// See #81357.
///
/// If `offset` is `None` then the current file position is used.
unsafe fn synchronous_read(
&self,
buf: *mut mem::MaybeUninit<u8>,
len: usize,
offset: Option<u64>,
) -> io::Result<usize> {
let mut io_status = c::IO_STATUS_BLOCK::default();
// The length is clamped at u32::MAX.
let len = cmp::min(len, c::DWORD::MAX as usize) as c::DWORD;
let status = c::NtReadFile(
self.as_handle(),
ptr::null_mut(),
None,
ptr::null_mut(),
&mut io_status,
buf,
len,
offset.map(|n| n as _).as_ref(),
None,
);
let status = if status == c::STATUS_PENDING {
c::WaitForSingleObject(self.as_raw_handle(), c::INFINITE);
io_status.status()
} else {
status
};
match status {
// If the operation has not completed then abort the process.
// Doing otherwise means that the buffer and stack may be written to
// after this function returns.
c::STATUS_PENDING => rtabort!("I/O error: operation failed to complete synchronously"),
// Return `Ok(0)` when there's nothing more to read.
c::STATUS_END_OF_FILE => Ok(0),
// Success!
status if c::nt_success(status) => Ok(io_status.Information),
status => {
let error = c::RtlNtStatusToDosError(status);
Err(io::Error::from_raw_os_error(error as _))
}
}
}
/// Performs a synchronous write.
///
/// If the handle is opened for asynchronous I/O then this abort the process.
/// See #81357.
///
/// If `offset` is `None` then the current file position is used.
fn synchronous_write(&self, buf: &[u8], offset: Option<u64>) -> io::Result<usize> {
let mut io_status = c::IO_STATUS_BLOCK::default();
// The length is clamped at u32::MAX.
let len = cmp::min(buf.len(), c::DWORD::MAX as usize) as c::DWORD;
let status = unsafe {
c::NtWriteFile(
self.as_handle(),
ptr::null_mut(),
None,
ptr::null_mut(),
&mut io_status,
buf.as_ptr(),
len,
offset.map(|n| n as _).as_ref(),
None,
)
};
let status = if status == c::STATUS_PENDING {
unsafe { c::WaitForSingleObject(self.as_raw_handle(), c::INFINITE) };
io_status.status()
} else {
status
};
match status {
// If the operation has not completed then abort the process.
// Doing otherwise means that the buffer may be read and the stack
// written to after this function returns.
c::STATUS_PENDING => rtabort!("I/O error: operation failed to complete synchronously"),
// Success!
status if c::nt_success(status) => Ok(io_status.Information),
status => {
let error = unsafe { c::RtlNtStatusToDosError(status) };
Err(io::Error::from_raw_os_error(error as _))
}
}
}
}
impl<'a> Read for &'a Handle {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
(**self).read_vectored(bufs)
}
}
|