1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
#![allow(missing_docs, nonstandard_style)]
use crate::ffi::{CStr, OsStr, OsString};
use crate::io::ErrorKind;
use crate::os::windows::ffi::{OsStrExt, OsStringExt};
use crate::path::PathBuf;
use crate::time::Duration;
pub use self::rand::hashmap_random_keys;
#[macro_use]
pub mod compat;
pub mod alloc;
pub mod args;
pub mod c;
pub mod cmath;
pub mod env;
pub mod fs;
pub mod handle;
pub mod io;
pub mod locks;
pub mod memchr;
pub mod net;
pub mod os;
pub mod os_str;
pub mod path;
pub mod pipe;
pub mod process;
pub mod rand;
pub mod thread;
pub mod thread_local_dtor;
pub mod thread_local_key;
pub mod thread_parker;
pub mod time;
cfg_if::cfg_if! {
if #[cfg(not(target_vendor = "uwp"))] {
pub mod stdio;
pub mod stack_overflow;
} else {
pub mod stdio_uwp;
pub mod stack_overflow_uwp;
pub use self::stdio_uwp as stdio;
pub use self::stack_overflow_uwp as stack_overflow;
}
}
// SAFETY: must be called only once during runtime initialization.
// NOTE: this is not guaranteed to run, for example when Rust code is called externally.
pub unsafe fn init(_argc: isize, _argv: *const *const u8) {
stack_overflow::init();
// Normally, `thread::spawn` will call `Thread::set_name` but since this thread already
// exists, we have to call it ourselves.
thread::Thread::set_name(&CStr::from_bytes_with_nul_unchecked(b"main\0"));
}
// SAFETY: must be called only once during runtime cleanup.
// NOTE: this is not guaranteed to run, for example when the program aborts.
pub unsafe fn cleanup() {
net::cleanup();
}
pub fn decode_error_kind(errno: i32) -> ErrorKind {
use ErrorKind::*;
match errno as c::DWORD {
c::ERROR_ACCESS_DENIED => return PermissionDenied,
c::ERROR_ALREADY_EXISTS => return AlreadyExists,
c::ERROR_FILE_EXISTS => return AlreadyExists,
c::ERROR_BROKEN_PIPE => return BrokenPipe,
c::ERROR_FILE_NOT_FOUND => return NotFound,
c::ERROR_PATH_NOT_FOUND => return NotFound,
c::ERROR_NO_DATA => return BrokenPipe,
c::ERROR_INVALID_NAME => return InvalidFilename,
c::ERROR_INVALID_PARAMETER => return InvalidInput,
c::ERROR_NOT_ENOUGH_MEMORY | c::ERROR_OUTOFMEMORY => return OutOfMemory,
c::ERROR_SEM_TIMEOUT
| c::WAIT_TIMEOUT
| c::ERROR_DRIVER_CANCEL_TIMEOUT
| c::ERROR_OPERATION_ABORTED
| c::ERROR_SERVICE_REQUEST_TIMEOUT
| c::ERROR_COUNTER_TIMEOUT
| c::ERROR_TIMEOUT
| c::ERROR_RESOURCE_CALL_TIMED_OUT
| c::ERROR_CTX_MODEM_RESPONSE_TIMEOUT
| c::ERROR_CTX_CLIENT_QUERY_TIMEOUT
| c::FRS_ERR_SYSVOL_POPULATE_TIMEOUT
| c::ERROR_DS_TIMELIMIT_EXCEEDED
| c::DNS_ERROR_RECORD_TIMED_OUT
| c::ERROR_IPSEC_IKE_TIMED_OUT
| c::ERROR_RUNLEVEL_SWITCH_TIMEOUT
| c::ERROR_RUNLEVEL_SWITCH_AGENT_TIMEOUT => return TimedOut,
c::ERROR_CALL_NOT_IMPLEMENTED => return Unsupported,
c::ERROR_HOST_UNREACHABLE => return HostUnreachable,
c::ERROR_NETWORK_UNREACHABLE => return NetworkUnreachable,
c::ERROR_DIRECTORY => return NotADirectory,
c::ERROR_DIRECTORY_NOT_SUPPORTED => return IsADirectory,
c::ERROR_DIR_NOT_EMPTY => return DirectoryNotEmpty,
c::ERROR_WRITE_PROTECT => return ReadOnlyFilesystem,
c::ERROR_DISK_FULL | c::ERROR_HANDLE_DISK_FULL => return StorageFull,
c::ERROR_SEEK_ON_DEVICE => return NotSeekable,
c::ERROR_DISK_QUOTA_EXCEEDED => return FilesystemQuotaExceeded,
c::ERROR_FILE_TOO_LARGE => return FileTooLarge,
c::ERROR_BUSY => return ResourceBusy,
c::ERROR_POSSIBLE_DEADLOCK => return Deadlock,
c::ERROR_NOT_SAME_DEVICE => return CrossesDevices,
c::ERROR_TOO_MANY_LINKS => return TooManyLinks,
c::ERROR_FILENAME_EXCED_RANGE => return InvalidFilename,
_ => {}
}
match errno {
c::WSAEACCES => PermissionDenied,
c::WSAEADDRINUSE => AddrInUse,
c::WSAEADDRNOTAVAIL => AddrNotAvailable,
c::WSAECONNABORTED => ConnectionAborted,
c::WSAECONNREFUSED => ConnectionRefused,
c::WSAECONNRESET => ConnectionReset,
c::WSAEINVAL => InvalidInput,
c::WSAENOTCONN => NotConnected,
c::WSAEWOULDBLOCK => WouldBlock,
c::WSAETIMEDOUT => TimedOut,
c::WSAEHOSTUNREACH => HostUnreachable,
c::WSAENETDOWN => NetworkDown,
c::WSAENETUNREACH => NetworkUnreachable,
_ => Uncategorized,
}
}
pub fn unrolled_find_u16s(needle: u16, haystack: &[u16]) -> Option<usize> {
let ptr = haystack.as_ptr();
let mut start = &haystack[..];
// For performance reasons unfold the loop eight times.
while start.len() >= 8 {
macro_rules! if_return {
($($n:literal,)+) => {
$(
if start[$n] == needle {
return Some(((&start[$n] as *const u16).addr() - ptr.addr()) / 2);
}
)+
}
}
if_return!(0, 1, 2, 3, 4, 5, 6, 7,);
start = &start[8..];
}
for c in start {
if *c == needle {
return Some(((c as *const u16).addr() - ptr.addr()) / 2);
}
}
None
}
pub fn to_u16s<S: AsRef<OsStr>>(s: S) -> crate::io::Result<Vec<u16>> {
fn inner(s: &OsStr) -> crate::io::Result<Vec<u16>> {
// Most paths are ASCII, so reserve capacity for as much as there are bytes
// in the OsStr plus one for the null-terminating character. We are not
// wasting bytes here as paths created by this function are primarily used
// in an ephemeral fashion.
let mut maybe_result = Vec::with_capacity(s.len() + 1);
maybe_result.extend(s.encode_wide());
if unrolled_find_u16s(0, &maybe_result).is_some() {
return Err(crate::io::const_io_error!(
ErrorKind::InvalidInput,
"strings passed to WinAPI cannot contain NULs",
));
}
maybe_result.push(0);
Ok(maybe_result)
}
inner(s.as_ref())
}
// Many Windows APIs follow a pattern of where we hand a buffer and then they
// will report back to us how large the buffer should be or how many bytes
// currently reside in the buffer. This function is an abstraction over these
// functions by making them easier to call.
//
// The first callback, `f1`, is yielded a (pointer, len) pair which can be
// passed to a syscall. The `ptr` is valid for `len` items (u16 in this case).
// The closure is expected to return what the syscall returns which will be
// interpreted by this function to determine if the syscall needs to be invoked
// again (with more buffer space).
//
// Once the syscall has completed (errors bail out early) the second closure is
// yielded the data which has been read from the syscall. The return value
// from this closure is then the return value of the function.
fn fill_utf16_buf<F1, F2, T>(mut f1: F1, f2: F2) -> crate::io::Result<T>
where
F1: FnMut(*mut u16, c::DWORD) -> c::DWORD,
F2: FnOnce(&[u16]) -> T,
{
// Start off with a stack buf but then spill over to the heap if we end up
// needing more space.
//
// This initial size also works around `GetFullPathNameW` returning
// incorrect size hints for some short paths:
// https://github.com/dylni/normpath/issues/5
let mut stack_buf = [0u16; 512];
let mut heap_buf = Vec::new();
unsafe {
let mut n = stack_buf.len();
loop {
let buf = if n <= stack_buf.len() {
&mut stack_buf[..]
} else {
let extra = n - heap_buf.len();
heap_buf.reserve(extra);
heap_buf.set_len(n);
&mut heap_buf[..]
};
// This function is typically called on windows API functions which
// will return the correct length of the string, but these functions
// also return the `0` on error. In some cases, however, the
// returned "correct length" may actually be 0!
//
// To handle this case we call `SetLastError` to reset it to 0 and
// then check it again if we get the "0 error value". If the "last
// error" is still 0 then we interpret it as a 0 length buffer and
// not an actual error.
c::SetLastError(0);
let k = match f1(buf.as_mut_ptr(), n as c::DWORD) {
0 if c::GetLastError() == 0 => 0,
0 => return Err(crate::io::Error::last_os_error()),
n => n,
} as usize;
if k == n && c::GetLastError() == c::ERROR_INSUFFICIENT_BUFFER {
n *= 2;
} else if k > n {
n = k;
} else if k == n {
// It is impossible to reach this point.
// On success, k is the returned string length excluding the null.
// On failure, k is the required buffer length including the null.
// Therefore k never equals n.
unreachable!();
} else {
return Ok(f2(&buf[..k]));
}
}
}
}
fn os2path(s: &[u16]) -> PathBuf {
PathBuf::from(OsString::from_wide(s))
}
pub fn truncate_utf16_at_nul(v: &[u16]) -> &[u16] {
match unrolled_find_u16s(0, v) {
// don't include the 0
Some(i) => &v[..i],
None => v,
}
}
pub trait IsZero {
fn is_zero(&self) -> bool;
}
macro_rules! impl_is_zero {
($($t:ident)*) => ($(impl IsZero for $t {
fn is_zero(&self) -> bool {
*self == 0
}
})*)
}
impl_is_zero! { i8 i16 i32 i64 isize u8 u16 u32 u64 usize }
pub fn cvt<I: IsZero>(i: I) -> crate::io::Result<I> {
if i.is_zero() { Err(crate::io::Error::last_os_error()) } else { Ok(i) }
}
pub fn dur2timeout(dur: Duration) -> c::DWORD {
// Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the
// timeouts in windows APIs are typically u32 milliseconds. To translate, we
// have two pieces to take care of:
//
// * Nanosecond precision is rounded up
// * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE
// (never time out).
dur.as_secs()
.checked_mul(1000)
.and_then(|ms| ms.checked_add((dur.subsec_nanos() as u64) / 1_000_000))
.and_then(|ms| ms.checked_add(if dur.subsec_nanos() % 1_000_000 > 0 { 1 } else { 0 }))
.map(|ms| if ms > <c::DWORD>::MAX as u64 { c::INFINITE } else { ms as c::DWORD })
.unwrap_or(c::INFINITE)
}
/// Use `__fastfail` to abort the process
///
/// This is the same implementation as in libpanic_abort's `__rust_start_panic`. See
/// that function for more information on `__fastfail`
#[allow(unreachable_code)]
pub fn abort_internal() -> ! {
#[allow(unused)]
const FAST_FAIL_FATAL_APP_EXIT: usize = 7;
#[cfg(not(miri))] // inline assembly does not work in Miri
unsafe {
cfg_if::cfg_if! {
if #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] {
core::arch::asm!("int $$0x29", in("ecx") FAST_FAIL_FATAL_APP_EXIT);
crate::intrinsics::unreachable();
} else if #[cfg(all(target_arch = "arm", target_feature = "thumb-mode"))] {
core::arch::asm!(".inst 0xDEFB", in("r0") FAST_FAIL_FATAL_APP_EXIT);
crate::intrinsics::unreachable();
} else if #[cfg(target_arch = "aarch64")] {
core::arch::asm!("brk 0xF003", in("x0") FAST_FAIL_FATAL_APP_EXIT);
crate::intrinsics::unreachable();
}
}
}
crate::intrinsics::abort();
}
|