summaryrefslogtreecommitdiffstats
path: root/library/std/src/sys/windows/time.rs
blob: b8209a8544585f1f5f6bafbdb88a2538564ebde7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use crate::cmp::Ordering;
use crate::fmt;
use crate::mem;
use crate::sys::c;
use crate::sys_common::IntoInner;
use crate::time::Duration;

use core::hash::{Hash, Hasher};

const NANOS_PER_SEC: u64 = 1_000_000_000;
const INTERVALS_PER_SEC: u64 = NANOS_PER_SEC / 100;

#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug, Hash)]
pub struct Instant {
    // This duration is relative to an arbitrary microsecond epoch
    // from the winapi QueryPerformanceCounter function.
    t: Duration,
}

#[derive(Copy, Clone)]
pub struct SystemTime {
    t: c::FILETIME,
}

const INTERVALS_TO_UNIX_EPOCH: u64 = 11_644_473_600 * INTERVALS_PER_SEC;

pub const UNIX_EPOCH: SystemTime = SystemTime {
    t: c::FILETIME {
        dwLowDateTime: INTERVALS_TO_UNIX_EPOCH as u32,
        dwHighDateTime: (INTERVALS_TO_UNIX_EPOCH >> 32) as u32,
    },
};

impl Instant {
    pub fn now() -> Instant {
        // High precision timing on windows operates in "Performance Counter"
        // units, as returned by the WINAPI QueryPerformanceCounter function.
        // These relate to seconds by a factor of QueryPerformanceFrequency.
        // In order to keep unit conversions out of normal interval math, we
        // measure in QPC units and immediately convert to nanoseconds.
        perf_counter::PerformanceCounterInstant::now().into()
    }

    pub fn checked_sub_instant(&self, other: &Instant) -> Option<Duration> {
        // On windows there's a threshold below which we consider two timestamps
        // equivalent due to measurement error. For more details + doc link,
        // check the docs on epsilon.
        let epsilon = perf_counter::PerformanceCounterInstant::epsilon();
        if other.t > self.t && other.t - self.t <= epsilon {
            Some(Duration::new(0, 0))
        } else {
            self.t.checked_sub(other.t)
        }
    }

    pub fn checked_add_duration(&self, other: &Duration) -> Option<Instant> {
        Some(Instant { t: self.t.checked_add(*other)? })
    }

    pub fn checked_sub_duration(&self, other: &Duration) -> Option<Instant> {
        Some(Instant { t: self.t.checked_sub(*other)? })
    }
}

impl SystemTime {
    pub fn now() -> SystemTime {
        unsafe {
            let mut t: SystemTime = mem::zeroed();
            c::GetSystemTimePreciseAsFileTime(&mut t.t);
            t
        }
    }

    fn from_intervals(intervals: i64) -> SystemTime {
        SystemTime {
            t: c::FILETIME {
                dwLowDateTime: intervals as c::DWORD,
                dwHighDateTime: (intervals >> 32) as c::DWORD,
            },
        }
    }

    fn intervals(&self) -> i64 {
        (self.t.dwLowDateTime as i64) | ((self.t.dwHighDateTime as i64) << 32)
    }

    pub fn sub_time(&self, other: &SystemTime) -> Result<Duration, Duration> {
        let me = self.intervals();
        let other = other.intervals();
        if me >= other {
            Ok(intervals2dur((me - other) as u64))
        } else {
            Err(intervals2dur((other - me) as u64))
        }
    }

    pub fn checked_add_duration(&self, other: &Duration) -> Option<SystemTime> {
        let intervals = self.intervals().checked_add(checked_dur2intervals(other)?)?;
        Some(SystemTime::from_intervals(intervals))
    }

    pub fn checked_sub_duration(&self, other: &Duration) -> Option<SystemTime> {
        let intervals = self.intervals().checked_sub(checked_dur2intervals(other)?)?;
        Some(SystemTime::from_intervals(intervals))
    }
}

impl PartialEq for SystemTime {
    fn eq(&self, other: &SystemTime) -> bool {
        self.intervals() == other.intervals()
    }
}

impl Eq for SystemTime {}

impl PartialOrd for SystemTime {
    fn partial_cmp(&self, other: &SystemTime) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for SystemTime {
    fn cmp(&self, other: &SystemTime) -> Ordering {
        self.intervals().cmp(&other.intervals())
    }
}

impl fmt::Debug for SystemTime {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("SystemTime").field("intervals", &self.intervals()).finish()
    }
}

impl From<c::FILETIME> for SystemTime {
    fn from(t: c::FILETIME) -> SystemTime {
        SystemTime { t }
    }
}

impl IntoInner<c::FILETIME> for SystemTime {
    fn into_inner(self) -> c::FILETIME {
        self.t
    }
}

impl Hash for SystemTime {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.intervals().hash(state)
    }
}

fn checked_dur2intervals(dur: &Duration) -> Option<i64> {
    dur.as_secs()
        .checked_mul(INTERVALS_PER_SEC)?
        .checked_add(dur.subsec_nanos() as u64 / 100)?
        .try_into()
        .ok()
}

fn intervals2dur(intervals: u64) -> Duration {
    Duration::new(intervals / INTERVALS_PER_SEC, ((intervals % INTERVALS_PER_SEC) * 100) as u32)
}

mod perf_counter {
    use super::NANOS_PER_SEC;
    use crate::sync::atomic::{AtomicU64, Ordering};
    use crate::sys::c;
    use crate::sys::cvt;
    use crate::sys_common::mul_div_u64;
    use crate::time::Duration;

    pub struct PerformanceCounterInstant {
        ts: c::LARGE_INTEGER,
    }
    impl PerformanceCounterInstant {
        pub fn now() -> Self {
            Self { ts: query() }
        }

        // Per microsoft docs, the margin of error for cross-thread time comparisons
        // using QueryPerformanceCounter is 1 "tick" -- defined as 1/frequency().
        // Reference: https://docs.microsoft.com/en-us/windows/desktop/SysInfo
        //                   /acquiring-high-resolution-time-stamps
        pub fn epsilon() -> Duration {
            let epsilon = NANOS_PER_SEC / (frequency() as u64);
            Duration::from_nanos(epsilon)
        }
    }
    impl From<PerformanceCounterInstant> for super::Instant {
        fn from(other: PerformanceCounterInstant) -> Self {
            let freq = frequency() as u64;
            let instant_nsec = mul_div_u64(other.ts as u64, NANOS_PER_SEC, freq);
            Self { t: Duration::from_nanos(instant_nsec) }
        }
    }

    fn frequency() -> c::LARGE_INTEGER {
        // Either the cached result of `QueryPerformanceFrequency` or `0` for
        // uninitialized. Storing this as a single `AtomicU64` allows us to use
        // `Relaxed` operations, as we are only interested in the effects on a
        // single memory location.
        static FREQUENCY: AtomicU64 = AtomicU64::new(0);

        let cached = FREQUENCY.load(Ordering::Relaxed);
        // If a previous thread has filled in this global state, use that.
        if cached != 0 {
            return cached as c::LARGE_INTEGER;
        }
        // ... otherwise learn for ourselves ...
        let mut frequency = 0;
        unsafe {
            cvt(c::QueryPerformanceFrequency(&mut frequency)).unwrap();
        }

        FREQUENCY.store(frequency as u64, Ordering::Relaxed);
        frequency
    }

    fn query() -> c::LARGE_INTEGER {
        let mut qpc_value: c::LARGE_INTEGER = 0;
        cvt(unsafe { c::QueryPerformanceCounter(&mut qpc_value) }).unwrap();
        qpc_value
    }
}