1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
use crate::cell::{Cell, UnsafeCell};
use crate::sync::atomic::{AtomicU8, Ordering};
use crate::sync::{Arc, Condvar, Mutex};
use crate::thread::{self, LocalKey};
use crate::thread_local;
#[derive(Clone, Default)]
struct Signal(Arc<(Mutex<bool>, Condvar)>);
impl Signal {
fn notify(&self) {
let (set, cvar) = &*self.0;
*set.lock().unwrap() = true;
cvar.notify_one();
}
fn wait(&self) {
let (set, cvar) = &*self.0;
let mut set = set.lock().unwrap();
while !*set {
set = cvar.wait(set).unwrap();
}
}
}
struct NotifyOnDrop(Signal);
impl Drop for NotifyOnDrop {
fn drop(&mut self) {
let NotifyOnDrop(ref f) = *self;
f.notify();
}
}
#[test]
fn smoke_no_dtor() {
thread_local!(static FOO: Cell<i32> = Cell::new(1));
run(&FOO);
thread_local!(static FOO2: Cell<i32> = const { Cell::new(1) });
run(&FOO2);
fn run(key: &'static LocalKey<Cell<i32>>) {
key.with(|f| {
assert_eq!(f.get(), 1);
f.set(2);
});
let t = thread::spawn(move || {
key.with(|f| {
assert_eq!(f.get(), 1);
});
});
t.join().unwrap();
key.with(|f| {
assert_eq!(f.get(), 2);
});
}
}
#[test]
fn states() {
struct Foo(&'static LocalKey<Foo>);
impl Drop for Foo {
fn drop(&mut self) {
assert!(self.0.try_with(|_| ()).is_err());
}
}
thread_local!(static FOO: Foo = Foo(&FOO));
run(&FOO);
thread_local!(static FOO2: Foo = const { Foo(&FOO2) });
run(&FOO2);
fn run(foo: &'static LocalKey<Foo>) {
thread::spawn(move || {
assert!(foo.try_with(|_| ()).is_ok());
})
.join()
.unwrap();
}
}
#[test]
fn smoke_dtor() {
thread_local!(static FOO: UnsafeCell<Option<NotifyOnDrop>> = UnsafeCell::new(None));
run(&FOO);
thread_local!(static FOO2: UnsafeCell<Option<NotifyOnDrop>> = const { UnsafeCell::new(None) });
run(&FOO2);
fn run(key: &'static LocalKey<UnsafeCell<Option<NotifyOnDrop>>>) {
let signal = Signal::default();
let signal2 = signal.clone();
let t = thread::spawn(move || unsafe {
let mut signal = Some(signal2);
key.with(|f| {
*f.get() = Some(NotifyOnDrop(signal.take().unwrap()));
});
});
signal.wait();
t.join().unwrap();
}
}
#[test]
fn circular() {
struct S1(&'static LocalKey<UnsafeCell<Option<S1>>>, &'static LocalKey<UnsafeCell<Option<S2>>>);
struct S2(&'static LocalKey<UnsafeCell<Option<S1>>>, &'static LocalKey<UnsafeCell<Option<S2>>>);
thread_local!(static K1: UnsafeCell<Option<S1>> = UnsafeCell::new(None));
thread_local!(static K2: UnsafeCell<Option<S2>> = UnsafeCell::new(None));
thread_local!(static K3: UnsafeCell<Option<S1>> = const { UnsafeCell::new(None) });
thread_local!(static K4: UnsafeCell<Option<S2>> = const { UnsafeCell::new(None) });
static mut HITS: usize = 0;
impl Drop for S1 {
fn drop(&mut self) {
unsafe {
HITS += 1;
if self.1.try_with(|_| ()).is_err() {
assert_eq!(HITS, 3);
} else {
if HITS == 1 {
self.1.with(|s| *s.get() = Some(S2(self.0, self.1)));
} else {
assert_eq!(HITS, 3);
}
}
}
}
}
impl Drop for S2 {
fn drop(&mut self) {
unsafe {
HITS += 1;
assert!(self.0.try_with(|_| ()).is_ok());
assert_eq!(HITS, 2);
self.0.with(|s| *s.get() = Some(S1(self.0, self.1)));
}
}
}
thread::spawn(move || {
drop(S1(&K1, &K2));
})
.join()
.unwrap();
unsafe {
HITS = 0;
}
thread::spawn(move || {
drop(S1(&K3, &K4));
})
.join()
.unwrap();
}
#[test]
fn self_referential() {
struct S1(&'static LocalKey<UnsafeCell<Option<S1>>>);
thread_local!(static K1: UnsafeCell<Option<S1>> = UnsafeCell::new(None));
thread_local!(static K2: UnsafeCell<Option<S1>> = const { UnsafeCell::new(None) });
impl Drop for S1 {
fn drop(&mut self) {
assert!(self.0.try_with(|_| ()).is_err());
}
}
thread::spawn(move || unsafe {
K1.with(|s| *s.get() = Some(S1(&K1)));
})
.join()
.unwrap();
thread::spawn(move || unsafe {
K2.with(|s| *s.get() = Some(S1(&K2)));
})
.join()
.unwrap();
}
// Note that this test will deadlock if TLS destructors aren't run (this
// requires the destructor to be run to pass the test).
#[test]
fn dtors_in_dtors_in_dtors() {
struct S1(Signal);
thread_local!(static K1: UnsafeCell<Option<S1>> = UnsafeCell::new(None));
thread_local!(static K2: UnsafeCell<Option<NotifyOnDrop>> = UnsafeCell::new(None));
impl Drop for S1 {
fn drop(&mut self) {
let S1(ref signal) = *self;
unsafe {
let _ = K2.try_with(|s| *s.get() = Some(NotifyOnDrop(signal.clone())));
}
}
}
let signal = Signal::default();
let signal2 = signal.clone();
let _t = thread::spawn(move || unsafe {
let mut signal = Some(signal2);
K1.with(|s| *s.get() = Some(S1(signal.take().unwrap())));
});
signal.wait();
}
#[test]
fn dtors_in_dtors_in_dtors_const_init() {
struct S1(Signal);
thread_local!(static K1: UnsafeCell<Option<S1>> = const { UnsafeCell::new(None) });
thread_local!(static K2: UnsafeCell<Option<NotifyOnDrop>> = const { UnsafeCell::new(None) });
impl Drop for S1 {
fn drop(&mut self) {
let S1(ref signal) = *self;
unsafe {
let _ = K2.try_with(|s| *s.get() = Some(NotifyOnDrop(signal.clone())));
}
}
}
let signal = Signal::default();
let signal2 = signal.clone();
let _t = thread::spawn(move || unsafe {
let mut signal = Some(signal2);
K1.with(|s| *s.get() = Some(S1(signal.take().unwrap())));
});
signal.wait();
}
// This test tests that TLS destructors have run before the thread joins. The
// test has no false positives (meaning: if the test fails, there's actually
// an ordering problem). It may have false negatives, where the test passes but
// join is not guaranteed to be after the TLS destructors. However, false
// negatives should be exceedingly rare due to judicious use of
// thread::yield_now and running the test several times.
#[test]
fn join_orders_after_tls_destructors() {
// We emulate a synchronous MPSC rendezvous channel using only atomics and
// thread::yield_now. We can't use std::mpsc as the implementation itself
// may rely on thread locals.
//
// The basic state machine for an SPSC rendezvous channel is:
// FRESH -> THREAD1_WAITING -> MAIN_THREAD_RENDEZVOUS
// where the first transition is done by the “receiving” thread and the 2nd
// transition is done by the “sending” thread.
//
// We add an additional state `THREAD2_LAUNCHED` between `FRESH` and
// `THREAD1_WAITING` to block until all threads are actually running.
//
// A thread that joins on the “receiving” thread completion should never
// observe the channel in the `THREAD1_WAITING` state. If this does occur,
// we switch to the “poison” state `THREAD2_JOINED` and panic all around.
// (This is equivalent to “sending” from an alternate producer thread.)
const FRESH: u8 = 0;
const THREAD2_LAUNCHED: u8 = 1;
const THREAD1_WAITING: u8 = 2;
const MAIN_THREAD_RENDEZVOUS: u8 = 3;
const THREAD2_JOINED: u8 = 4;
static SYNC_STATE: AtomicU8 = AtomicU8::new(FRESH);
for _ in 0..10 {
SYNC_STATE.store(FRESH, Ordering::SeqCst);
let jh = thread::Builder::new()
.name("thread1".into())
.spawn(move || {
struct TlDrop;
impl Drop for TlDrop {
fn drop(&mut self) {
let mut sync_state = SYNC_STATE.swap(THREAD1_WAITING, Ordering::SeqCst);
loop {
match sync_state {
THREAD2_LAUNCHED | THREAD1_WAITING => thread::yield_now(),
MAIN_THREAD_RENDEZVOUS => break,
THREAD2_JOINED => panic!(
"Thread 1 still running after thread 2 joined on thread 1"
),
v => unreachable!("sync state: {}", v),
}
sync_state = SYNC_STATE.load(Ordering::SeqCst);
}
}
}
thread_local! {
static TL_DROP: TlDrop = TlDrop;
}
TL_DROP.with(|_| {});
loop {
match SYNC_STATE.load(Ordering::SeqCst) {
FRESH => thread::yield_now(),
THREAD2_LAUNCHED => break,
v => unreachable!("sync state: {}", v),
}
}
})
.unwrap();
let jh2 = thread::Builder::new()
.name("thread2".into())
.spawn(move || {
assert_eq!(SYNC_STATE.swap(THREAD2_LAUNCHED, Ordering::SeqCst), FRESH);
jh.join().unwrap();
match SYNC_STATE.swap(THREAD2_JOINED, Ordering::SeqCst) {
MAIN_THREAD_RENDEZVOUS => return,
THREAD2_LAUNCHED | THREAD1_WAITING => {
panic!("Thread 2 running after thread 1 join before main thread rendezvous")
}
v => unreachable!("sync state: {:?}", v),
}
})
.unwrap();
loop {
match SYNC_STATE.compare_exchange(
THREAD1_WAITING,
MAIN_THREAD_RENDEZVOUS,
Ordering::SeqCst,
Ordering::SeqCst,
) {
Ok(_) => break,
Err(FRESH) => thread::yield_now(),
Err(THREAD2_LAUNCHED) => thread::yield_now(),
Err(THREAD2_JOINED) => {
panic!("Main thread rendezvous after thread 2 joined thread 1")
}
v => unreachable!("sync state: {:?}", v),
}
}
jh2.join().unwrap();
}
}
|