1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
//! An example showing runtime dispatch to an architecture-optimized
//! implementation.
//!
//! This program implements hex encoding a slice into a predetermined
//! destination using various different instruction sets. This selects at
//! runtime the most optimized implementation and uses that rather than being
//! required to be compiled differently.
//!
//! You can test out this program via:
//!
//! echo test | cargo +nightly run --release hex
//!
//! and you should see `746573740a` get printed out.
#![feature(stdsimd, wasm_target_feature)]
#![cfg_attr(test, feature(test))]
#![allow(
clippy::unwrap_used,
clippy::print_stdout,
clippy::unwrap_used,
clippy::shadow_reuse,
clippy::cast_possible_wrap,
clippy::cast_ptr_alignment,
clippy::cast_sign_loss,
clippy::missing_docs_in_private_items
)]
use std::{
io::{self, Read},
str,
};
#[cfg(target_arch = "x86")]
use {core_arch::arch::x86::*, std_detect::is_x86_feature_detected};
#[cfg(target_arch = "x86_64")]
use {core_arch::arch::x86_64::*, std_detect::is_x86_feature_detected};
fn main() {
let mut input = Vec::new();
io::stdin().read_to_end(&mut input).unwrap();
let mut dst = vec![0; 2 * input.len()];
let s = hex_encode(&input, &mut dst).unwrap();
println!("{s}");
}
fn hex_encode<'a>(src: &[u8], dst: &'a mut [u8]) -> Result<&'a str, usize> {
let len = src.len().checked_mul(2).unwrap();
if dst.len() < len {
return Err(len);
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
{
if is_x86_feature_detected!("avx2") {
return unsafe { hex_encode_avx2(src, dst) };
}
if is_x86_feature_detected!("sse4.1") {
return unsafe { hex_encode_sse41(src, dst) };
}
}
#[cfg(target_arch = "wasm32")]
{
if true {
return unsafe { hex_encode_simd128(src, dst) };
}
}
hex_encode_fallback(src, dst)
}
#[target_feature(enable = "avx2")]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
unsafe fn hex_encode_avx2<'a>(mut src: &[u8], dst: &'a mut [u8]) -> Result<&'a str, usize> {
let ascii_zero = _mm256_set1_epi8(b'0' as i8);
let nines = _mm256_set1_epi8(9);
let ascii_a = _mm256_set1_epi8((b'a' - 9 - 1) as i8);
let and4bits = _mm256_set1_epi8(0xf);
let mut i = 0_usize;
while src.len() >= 32 {
let invec = _mm256_loadu_si256(src.as_ptr() as *const _);
let masked1 = _mm256_and_si256(invec, and4bits);
let masked2 = _mm256_and_si256(_mm256_srli_epi64(invec, 4), and4bits);
// return 0xff corresponding to the elements > 9, or 0x00 otherwise
let cmpmask1 = _mm256_cmpgt_epi8(masked1, nines);
let cmpmask2 = _mm256_cmpgt_epi8(masked2, nines);
// add '0' or the offset depending on the masks
let masked1 = _mm256_add_epi8(masked1, _mm256_blendv_epi8(ascii_zero, ascii_a, cmpmask1));
let masked2 = _mm256_add_epi8(masked2, _mm256_blendv_epi8(ascii_zero, ascii_a, cmpmask2));
// interleave masked1 and masked2 bytes
let res1 = _mm256_unpacklo_epi8(masked2, masked1);
let res2 = _mm256_unpackhi_epi8(masked2, masked1);
// Store everything into the right destination now
let base = dst.as_mut_ptr().add(i * 2);
let base1 = base.add(0) as *mut _;
let base2 = base.add(16) as *mut _;
let base3 = base.add(32) as *mut _;
let base4 = base.add(48) as *mut _;
_mm256_storeu2_m128i(base3, base1, res1);
_mm256_storeu2_m128i(base4, base2, res2);
src = &src[32..];
i += 32;
}
let _ = hex_encode_sse41(src, &mut dst[i * 2..]);
Ok(str::from_utf8_unchecked(&dst[..src.len() * 2 + i * 2]))
}
// copied from https://github.com/Matherunner/bin2hex-sse/blob/master/base16_sse4.cpp
#[target_feature(enable = "sse4.1")]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
unsafe fn hex_encode_sse41<'a>(mut src: &[u8], dst: &'a mut [u8]) -> Result<&'a str, usize> {
let ascii_zero = _mm_set1_epi8(b'0' as i8);
let nines = _mm_set1_epi8(9);
let ascii_a = _mm_set1_epi8((b'a' - 9 - 1) as i8);
let and4bits = _mm_set1_epi8(0xf);
let mut i = 0_usize;
while src.len() >= 16 {
let invec = _mm_loadu_si128(src.as_ptr() as *const _);
let masked1 = _mm_and_si128(invec, and4bits);
let masked2 = _mm_and_si128(_mm_srli_epi64(invec, 4), and4bits);
// return 0xff corresponding to the elements > 9, or 0x00 otherwise
let cmpmask1 = _mm_cmpgt_epi8(masked1, nines);
let cmpmask2 = _mm_cmpgt_epi8(masked2, nines);
// add '0' or the offset depending on the masks
let masked1 = _mm_add_epi8(masked1, _mm_blendv_epi8(ascii_zero, ascii_a, cmpmask1));
let masked2 = _mm_add_epi8(masked2, _mm_blendv_epi8(ascii_zero, ascii_a, cmpmask2));
// interleave masked1 and masked2 bytes
let res1 = _mm_unpacklo_epi8(masked2, masked1);
let res2 = _mm_unpackhi_epi8(masked2, masked1);
_mm_storeu_si128(dst.as_mut_ptr().add(i * 2) as *mut _, res1);
_mm_storeu_si128(dst.as_mut_ptr().add(i * 2 + 16) as *mut _, res2);
src = &src[16..];
i += 16;
}
let _ = hex_encode_fallback(src, &mut dst[i * 2..]);
Ok(str::from_utf8_unchecked(&dst[..src.len() * 2 + i * 2]))
}
#[cfg(target_arch = "wasm32")]
#[target_feature(enable = "simd128")]
unsafe fn hex_encode_simd128<'a>(mut src: &[u8], dst: &'a mut [u8]) -> Result<&'a str, usize> {
use core_arch::arch::wasm32::*;
let ascii_zero = u8x16_splat(b'0');
let nines = u8x16_splat(9);
let ascii_a = u8x16_splat(b'a' - 9 - 1);
let and4bits = u8x16_splat(0xf);
let mut i = 0_usize;
while src.len() >= 16 {
let invec = v128_load(src.as_ptr() as *const _);
let masked1 = v128_and(invec, and4bits);
let masked2 = v128_and(u8x16_shr(invec, 4), and4bits);
// return 0xff corresponding to the elements > 9, or 0x00 otherwise
let cmpmask1 = u8x16_gt(masked1, nines);
let cmpmask2 = u8x16_gt(masked2, nines);
// add '0' or the offset depending on the masks
let masked1 = u8x16_add(masked1, v128_bitselect(ascii_a, ascii_zero, cmpmask1));
let masked2 = u8x16_add(masked2, v128_bitselect(ascii_a, ascii_zero, cmpmask2));
// Next we need to shuffle around masked{1,2} to get back to the
// original source text order. The first element (res1) we'll store uses
// all the low bytes from the 2 masks and the second element (res2) uses
// all the upper bytes.
let res1 = u8x16_shuffle::<0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23>(
masked2, masked1,
);
let res2 = u8x16_shuffle::<8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31>(
masked2, masked1,
);
v128_store(dst.as_mut_ptr().add(i * 2) as *mut _, res1);
v128_store(dst.as_mut_ptr().add(i * 2 + 16) as *mut _, res2);
src = &src[16..];
i += 16;
}
let _ = hex_encode_fallback(src, &mut dst[i * 2..]);
Ok(str::from_utf8_unchecked(&dst[..src.len() * 2 + i * 2]))
}
fn hex_encode_fallback<'a>(src: &[u8], dst: &'a mut [u8]) -> Result<&'a str, usize> {
fn hex(byte: u8) -> u8 {
static TABLE: &[u8] = b"0123456789abcdef";
TABLE[byte as usize]
}
for (byte, slots) in src.iter().zip(dst.chunks_mut(2)) {
slots[0] = hex((*byte >> 4) & 0xf);
slots[1] = hex(*byte & 0xf);
}
unsafe { Ok(str::from_utf8_unchecked(&dst[..src.len() * 2])) }
}
// Run these with `cargo +nightly test --example hex -p stdarch`
#[cfg(test)]
mod tests {
use std::iter;
use super::*;
fn test(input: &[u8], output: &str) {
let tmp = || vec![0; input.len() * 2];
assert_eq!(hex_encode_fallback(input, &mut tmp()).unwrap(), output);
assert_eq!(hex_encode(input, &mut tmp()).unwrap(), output);
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
unsafe {
if self::is_x86_feature_detected!("avx2") {
assert_eq!(hex_encode_avx2(input, &mut tmp()).unwrap(), output);
}
if self::is_x86_feature_detected!("sse4.1") {
assert_eq!(hex_encode_sse41(input, &mut tmp()).unwrap(), output);
}
}
}
#[test]
fn empty() {
test(b"", "");
}
#[test]
fn big() {
test(
&[0; 1024],
&iter::repeat('0').take(2048).collect::<String>(),
);
}
#[test]
fn odd() {
test(
&[0; 313],
&iter::repeat('0').take(313 * 2).collect::<String>(),
);
}
#[test]
fn avx_works() {
let mut input = [0; 33];
input[4] = 3;
input[16] = 3;
input[17] = 0x30;
input[21] = 1;
input[31] = 0x24;
test(
&input,
"\
0000000003000000\
0000000000000000\
0330000000010000\
0000000000000024\
00\
",
);
}
quickcheck::quickcheck! {
fn encode_equals_fallback(input: Vec<u8>) -> bool {
let mut space1 = vec![0; input.len() * 2];
let mut space2 = vec![0; input.len() * 2];
let a = hex_encode(&input, &mut space1).unwrap();
let b = hex_encode_fallback(&input, &mut space2).unwrap();
a == b
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn avx_equals_fallback(input: Vec<u8>) -> bool {
if !self::is_x86_feature_detected!("avx2") {
return true
}
let mut space1 = vec![0; input.len() * 2];
let mut space2 = vec![0; input.len() * 2];
let a = unsafe { hex_encode_avx2(&input, &mut space1).unwrap() };
let b = hex_encode_fallback(&input, &mut space2).unwrap();
a == b
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn sse41_equals_fallback(input: Vec<u8>) -> bool {
if !self::is_x86_feature_detected!("avx2") {
return true
}
let mut space1 = vec![0; input.len() * 2];
let mut space2 = vec![0; input.len() * 2];
let a = unsafe { hex_encode_sse41(&input, &mut space1).unwrap() };
let b = hex_encode_fallback(&input, &mut space2).unwrap();
a == b
}
}
}
// Run these with `cargo +nightly bench --example hex -p stdarch`
#[cfg(test)]
mod benches {
extern crate rand;
extern crate test;
use self::rand::Rng;
use super::*;
const SMALL_LEN: usize = 117;
const LARGE_LEN: usize = 1 * 1024 * 1024;
fn doit(
b: &mut test::Bencher,
len: usize,
f: for<'a> unsafe fn(&[u8], &'a mut [u8]) -> Result<&'a str, usize>,
) {
let mut rng = rand::thread_rng();
let input = std::iter::repeat(())
.map(|()| rng.gen::<u8>())
.take(len)
.collect::<Vec<_>>();
let mut dst = vec![0; input.len() * 2];
b.bytes = len as u64;
b.iter(|| unsafe {
f(&input, &mut dst).unwrap();
dst[0]
});
}
#[bench]
fn small_default(b: &mut test::Bencher) {
doit(b, SMALL_LEN, hex_encode);
}
#[bench]
fn small_fallback(b: &mut test::Bencher) {
doit(b, SMALL_LEN, hex_encode_fallback);
}
#[bench]
fn large_default(b: &mut test::Bencher) {
doit(b, LARGE_LEN, hex_encode);
}
#[bench]
fn large_fallback(b: &mut test::Bencher) {
doit(b, LARGE_LEN, hex_encode_fallback);
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod x86 {
use super::*;
#[bench]
fn small_avx2(b: &mut test::Bencher) {
if self::is_x86_feature_detected!("avx2") {
doit(b, SMALL_LEN, hex_encode_avx2);
}
}
#[bench]
fn small_sse41(b: &mut test::Bencher) {
if self::is_x86_feature_detected!("sse4.1") {
doit(b, SMALL_LEN, hex_encode_sse41);
}
}
#[bench]
fn large_avx2(b: &mut test::Bencher) {
if self::is_x86_feature_detected!("avx2") {
doit(b, LARGE_LEN, hex_encode_avx2);
}
}
#[bench]
fn large_sse41(b: &mut test::Bencher) {
if self::is_x86_feature_detected!("sse4.1") {
doit(b, LARGE_LEN, hex_encode_sse41);
}
}
}
}
|