1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
// This file contains type definitions that are processed by the Closure Compiler but are
// not put into the JavaScript we include as part of the documentation. It is used for
// type checking. See README.md in this directory for more info.
/* eslint-disable */
let searchState;
function initSearch(searchIndex){}
/**
* @typedef {{
* name: string,
* id: integer|null,
* fullPath: Array<string>,
* pathWithoutLast: Array<string>,
* pathLast: string,
* generics: Array<QueryElement>,
* }}
*/
let QueryElement;
/**
* @typedef {{
* pos: number,
* totalElems: number,
* typeFilter: (null|string),
* userQuery: string,
* }}
*/
let ParserState;
/**
* @typedef {{
* original: string,
* userQuery: string,
* typeFilter: number,
* elems: Array<QueryElement>,
* args: Array<QueryElement>,
* returned: Array<QueryElement>,
* foundElems: number,
* totalElems: number,
* literalSearch: boolean,
* corrections: Array<{from: string, to: integer}>,
* }}
*/
let ParsedQuery;
/**
* @typedef {{
* crate: string,
* desc: string,
* id: number,
* name: string,
* normalizedName: string,
* parent: (Object|null|undefined),
* path: string,
* ty: (Number|null|number),
* type: FunctionSearchType?
* }}
*/
let Row;
/**
* @typedef {{
* in_args: Array<Object>,
* returned: Array<Object>,
* others: Array<Object>,
* query: ParsedQuery,
* }}
*/
let ResultsTable;
/**
* @typedef {Map<String, ResultObject>}
*/
let Results;
/**
* @typedef {{
* desc: string,
* displayPath: string,
* fullPath: string,
* href: string,
* id: number,
* lev: number,
* name: string,
* normalizedName: string,
* parent: (Object|undefined),
* path: string,
* ty: number,
* }}
*/
let ResultObject;
/**
* A pair of [inputs, outputs], or 0 for null. This is stored in the search index.
* The JavaScript deserializes this into FunctionSearchType.
*
* Numeric IDs are *ONE-indexed* into the paths array (`p`). Zero is used as a sentinel for `null`
* because `null` is four bytes while `0` is one byte.
*
* An input or output can be encoded as just a number if there is only one of them, AND
* it has no generics. The no generics rule exists to avoid ambiguity: imagine if you had
* a function with a single output, and that output had a single generic:
*
* fn something() -> Result<usize, usize>
*
* If output was allowed to be any RawFunctionType, it would look like thi
*
* [[], [50, [3, 3]]]
*
* The problem is that the above output could be interpreted as either a type with ID 50 and two
* generics, or it could be interpreted as a pair of types, the first one with ID 50 and the second
* with ID 3 and a single generic parameter that is also ID 3. We avoid this ambiguity by choosing
* in favor of the pair of types interpretation. This is why the `(number|Array<RawFunctionType>)`
* is used instead of `(RawFunctionType|Array<RawFunctionType>)`.
*
* The output can be skipped if it's actually unit and there's no type constraints. If thi
* function accepts constrained generics, then the output will be unconditionally emitted, and
* after it will come a list of trait constraints. The position of the item in the list will
* determine which type parameter it is. For example:
*
* [1, 2, 3, 4, 5]
* ^ ^ ^ ^ ^
* | | | | - generic parameter (-3) of trait 5
* | | | - generic parameter (-2) of trait 4
* | | - generic parameter (-1) of trait 3
* | - this function returns a single value (type 2)
* - this function takes a single input parameter (type 1)
*
* Or, for a less contrived version:
*
* [[[4, -1], 3], [[5, -1]], 11]
* -^^^^^^^---- ^^^^^^^ ^^
* | | | - generic parameter, roughly `where -1: 11`
* | | | since -1 is the type parameter and 11 the trait
* | | - function output 5<-1>
* | - the overall function signature is something like
* | `fn(4<-1>, 3) -> 5<-1> where -1: 11`
* - function input, corresponds roughly to 4<-1>
* 4 is an index into the `p` array for a type
* -1 is the generic parameter, given by 11
*
* If a generic parameter has multiple trait constraints, it gets wrapped in an array, just like
* function inputs and outputs:
*
* [-1, -1, [4, 3]]
* ^^^^^^ where -1: 4 + 3
*
* If a generic parameter's trait constraint has generic parameters, it gets wrapped in the array
* even if only one exists. In other words, the ambiguity of `4<3>` and `4 + 3` is resolved in
* favor of `4 + 3`:
*
* [-1, -1, [[4, 3]]]
* ^^^^^^^^ where -1: 4 + 3
*
* [-1, -1, [5, [4, 3]]]
* ^^^^^^^^^^^ where -1: 5, -2: 4 + 3
*
* If a generic parameter has no trait constraints (like in Rust, the `Sized` constraint i
* implied and a fake `?Sized` constraint used to note its absence), it will be filled in with 0.
*
* @typedef {(
* 0 |
* [(number|Array<RawFunctionType>)] |
* [(number|Array<RawFunctionType>), (number|Array<RawFunctionType>)] |
* Array<(number|Array<RawFunctionType>)>
* )}
*/
let RawFunctionSearchType;
/**
* A single function input or output type. This is either a single path ID, or a pair of
* [path ID, generics].
*
* Numeric IDs are *ONE-indexed* into the paths array (`p`). Zero is used as a sentinel for `null`
* because `null` is four bytes while `0` is one byte.
*
* @typedef {number | [number, Array<RawFunctionType>]}
*/
let RawFunctionType;
/**
* @typedef {{
* inputs: Array<FunctionType>,
* output: Array<FunctionType>,
* where_clause: Array<Array<FunctionType>>,
* }}
*/
let FunctionSearchType;
/**
* @typedef {{
* id: (null|number),
* ty: (null|number),
* generics: Array<FunctionType>,
* }}
*/
let FunctionType;
|