summaryrefslogtreecommitdiffstats
path: root/src/tools/clippy/clippy_lints/src/cognitive_complexity.rs
blob: e8531157e0f7a538465c5adf5b3c4d055ea322d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
//! calculate cognitive complexity and warn about overly complex functions

use clippy_utils::diagnostics::span_lint_and_help;
use clippy_utils::source::snippet_opt;
use clippy_utils::ty::is_type_diagnostic_item;
use clippy_utils::visitors::for_each_expr;
use clippy_utils::{get_async_fn_body, is_async_fn, LimitStack};
use core::ops::ControlFlow;
use rustc_ast::ast::Attribute;
use rustc_hir::intravisit::FnKind;
use rustc_hir::{Body, Expr, ExprKind, FnDecl};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_session::{declare_tool_lint, impl_lint_pass};
use rustc_span::def_id::LocalDefId;
use rustc_span::source_map::Span;
use rustc_span::{sym, BytePos};

declare_clippy_lint! {
    /// ### What it does
    /// Checks for methods with high cognitive complexity.
    ///
    /// ### Why is this bad?
    /// Methods of high cognitive complexity tend to be hard to
    /// both read and maintain. Also LLVM will tend to optimize small methods better.
    ///
    /// ### Known problems
    /// Sometimes it's hard to find a way to reduce the
    /// complexity.
    ///
    /// ### Example
    /// You'll see it when you get the warning.
    #[clippy::version = "1.35.0"]
    pub COGNITIVE_COMPLEXITY,
    nursery,
    "functions that should be split up into multiple functions"
}

pub struct CognitiveComplexity {
    limit: LimitStack,
}

impl CognitiveComplexity {
    #[must_use]
    pub fn new(limit: u64) -> Self {
        Self {
            limit: LimitStack::new(limit),
        }
    }
}

impl_lint_pass!(CognitiveComplexity => [COGNITIVE_COMPLEXITY]);

impl CognitiveComplexity {
    #[expect(clippy::cast_possible_truncation)]
    fn check<'tcx>(
        &mut self,
        cx: &LateContext<'tcx>,
        kind: FnKind<'tcx>,
        decl: &'tcx FnDecl<'_>,
        expr: &'tcx Expr<'_>,
        body_span: Span,
    ) {
        if body_span.from_expansion() {
            return;
        }

        let mut cc = 1u64;
        let mut returns = 0u64;
        let _: Option<!> = for_each_expr(expr, |e| {
            match e.kind {
                ExprKind::If(_, _, _) => {
                    cc += 1;
                },
                ExprKind::Match(_, arms, _) => {
                    if arms.len() > 1 {
                        cc += 1;
                    }
                    cc += arms.iter().filter(|arm| arm.guard.is_some()).count() as u64;
                },
                ExprKind::Ret(_) => returns += 1,
                _ => {},
            }
            ControlFlow::Continue(())
        });

        let ret_ty = cx.typeck_results().node_type(expr.hir_id);
        let ret_adjust = if is_type_diagnostic_item(cx, ret_ty, sym::Result) {
            returns
        } else {
            #[expect(clippy::integer_division)]
            (returns / 2)
        };

        // prevent degenerate cases where unreachable code contains `return` statements
        if cc >= ret_adjust {
            cc -= ret_adjust;
        }

        if cc > self.limit.limit() {
            let fn_span = match kind {
                FnKind::ItemFn(ident, _, _) | FnKind::Method(ident, _) => ident.span,
                FnKind::Closure => {
                    let header_span = body_span.with_hi(decl.output.span().lo());
                    let pos = snippet_opt(cx, header_span).and_then(|snip| {
                        let low_offset = snip.find('|')?;
                        let high_offset = 1 + snip.get(low_offset + 1..)?.find('|')?;
                        let low = header_span.lo() + BytePos(low_offset as u32);
                        let high = low + BytePos(high_offset as u32 + 1);

                        Some((low, high))
                    });

                    if let Some((low, high)) = pos {
                        Span::new(low, high, header_span.ctxt(), header_span.parent())
                    } else {
                        return;
                    }
                },
            };

            span_lint_and_help(
                cx,
                COGNITIVE_COMPLEXITY,
                fn_span,
                &format!(
                    "the function has a cognitive complexity of ({cc}/{})",
                    self.limit.limit()
                ),
                None,
                "you could split it up into multiple smaller functions",
            );
        }
    }
}

impl<'tcx> LateLintPass<'tcx> for CognitiveComplexity {
    fn check_fn(
        &mut self,
        cx: &LateContext<'tcx>,
        kind: FnKind<'tcx>,
        decl: &'tcx FnDecl<'_>,
        body: &'tcx Body<'_>,
        span: Span,
        def_id: LocalDefId,
    ) {
        if !cx.tcx.has_attr(def_id.to_def_id(), sym::test) {
            let expr = if is_async_fn(kind) {
                match get_async_fn_body(cx.tcx, body) {
                    Some(b) => b,
                    None => {
                        return;
                    },
                }
            } else {
                body.value
            };

            self.check(cx, kind, decl, expr, span);
        }
    }

    fn enter_lint_attrs(&mut self, cx: &LateContext<'tcx>, attrs: &'tcx [Attribute]) {
        self.limit.push_attrs(cx.sess(), attrs, "cognitive_complexity");
    }
    fn exit_lint_attrs(&mut self, cx: &LateContext<'tcx>, attrs: &'tcx [Attribute]) {
        self.limit.pop_attrs(cx.sess(), attrs, "cognitive_complexity");
    }
}