summaryrefslogtreecommitdiffstats
path: root/src/tools/clippy/clippy_lints/src/lifetimes.rs
blob: 986ffcad883db909db9f0776a73d359a0bec31f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
use clippy_utils::diagnostics::{span_lint, span_lint_and_then};
use clippy_utils::trait_ref_of_method;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::Applicability;
use rustc_hir::intravisit::nested_filter::{self as hir_nested_filter, NestedFilter};
use rustc_hir::intravisit::{
    walk_fn_decl, walk_generic_param, walk_generics, walk_impl_item_ref, walk_item, walk_param_bound,
    walk_poly_trait_ref, walk_trait_ref, walk_ty, Visitor,
};
use rustc_hir::FnRetTy::Return;
use rustc_hir::{
    lang_items, BareFnTy, BodyId, FnDecl, FnSig, GenericArg, GenericBound, GenericParam, GenericParamKind, Generics,
    Impl, ImplItem, ImplItemKind, Item, ItemKind, Lifetime, LifetimeName, LifetimeParamKind, Node, PolyTraitRef,
    PredicateOrigin, TraitFn, TraitItem, TraitItemKind, Ty, TyKind, WherePredicate,
};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_middle::hir::nested_filter as middle_nested_filter;
use rustc_middle::lint::in_external_macro;
use rustc_session::{declare_lint_pass, declare_tool_lint};
use rustc_span::def_id::LocalDefId;
use rustc_span::source_map::Span;
use rustc_span::symbol::{kw, Ident, Symbol};

declare_clippy_lint! {
    /// ### What it does
    /// Checks for lifetime annotations which can be removed by
    /// relying on lifetime elision.
    ///
    /// ### Why is this bad?
    /// The additional lifetimes make the code look more
    /// complicated, while there is nothing out of the ordinary going on. Removing
    /// them leads to more readable code.
    ///
    /// ### Known problems
    /// - We bail out if the function has a `where` clause where lifetimes
    /// are mentioned due to potential false positives.
    ///
    /// ### Example
    /// ```rust
    /// // Unnecessary lifetime annotations
    /// fn in_and_out<'a>(x: &'a u8, y: u8) -> &'a u8 {
    ///     x
    /// }
    /// ```
    ///
    /// Use instead:
    /// ```rust
    /// fn elided(x: &u8, y: u8) -> &u8 {
    ///     x
    /// }
    /// ```
    #[clippy::version = "pre 1.29.0"]
    pub NEEDLESS_LIFETIMES,
    complexity,
    "using explicit lifetimes for references in function arguments when elision rules \
     would allow omitting them"
}

declare_clippy_lint! {
    /// ### What it does
    /// Checks for lifetimes in generics that are never used
    /// anywhere else.
    ///
    /// ### Why is this bad?
    /// The additional lifetimes make the code look more
    /// complicated, while there is nothing out of the ordinary going on. Removing
    /// them leads to more readable code.
    ///
    /// ### Example
    /// ```rust
    /// // unnecessary lifetimes
    /// fn unused_lifetime<'a>(x: u8) {
    ///     // ..
    /// }
    /// ```
    ///
    /// Use instead:
    /// ```rust
    /// fn no_lifetime(x: u8) {
    ///     // ...
    /// }
    /// ```
    #[clippy::version = "pre 1.29.0"]
    pub EXTRA_UNUSED_LIFETIMES,
    complexity,
    "unused lifetimes in function definitions"
}

declare_lint_pass!(Lifetimes => [NEEDLESS_LIFETIMES, EXTRA_UNUSED_LIFETIMES]);

impl<'tcx> LateLintPass<'tcx> for Lifetimes {
    fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) {
        if let ItemKind::Fn(ref sig, generics, id) = item.kind {
            check_fn_inner(cx, sig, Some(id), None, generics, item.span, true);
        } else if let ItemKind::Impl(impl_) = item.kind {
            if !item.span.from_expansion() {
                report_extra_impl_lifetimes(cx, impl_);
            }
        }
    }

    fn check_impl_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx ImplItem<'_>) {
        if let ImplItemKind::Fn(ref sig, id) = item.kind {
            let report_extra_lifetimes = trait_ref_of_method(cx, item.owner_id.def_id).is_none();
            check_fn_inner(
                cx,
                sig,
                Some(id),
                None,
                item.generics,
                item.span,
                report_extra_lifetimes,
            );
        }
    }

    fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx TraitItem<'_>) {
        if let TraitItemKind::Fn(ref sig, ref body) = item.kind {
            let (body, trait_sig) = match *body {
                TraitFn::Required(sig) => (None, Some(sig)),
                TraitFn::Provided(id) => (Some(id), None),
            };
            check_fn_inner(cx, sig, body, trait_sig, item.generics, item.span, true);
        }
    }
}

fn check_fn_inner<'tcx>(
    cx: &LateContext<'tcx>,
    sig: &'tcx FnSig<'_>,
    body: Option<BodyId>,
    trait_sig: Option<&[Ident]>,
    generics: &'tcx Generics<'_>,
    span: Span,
    report_extra_lifetimes: bool,
) {
    if in_external_macro(cx.sess(), span) || has_where_lifetimes(cx, generics) {
        return;
    }

    let types = generics
        .params
        .iter()
        .filter(|param| matches!(param.kind, GenericParamKind::Type { .. }));

    for typ in types {
        if !typ.span.eq_ctxt(span) {
            return;
        }

        for pred in generics.bounds_for_param(typ.def_id) {
            if pred.origin == PredicateOrigin::WhereClause {
                // has_where_lifetimes checked that this predicate contains no lifetime.
                continue;
            }

            for bound in pred.bounds {
                let mut visitor = RefVisitor::new(cx);
                walk_param_bound(&mut visitor, bound);
                if visitor.lts.iter().any(|lt| matches!(lt.res, LifetimeName::Param(_))) {
                    return;
                }
                if let GenericBound::Trait(ref trait_ref, _) = *bound {
                    let params = &trait_ref
                        .trait_ref
                        .path
                        .segments
                        .last()
                        .expect("a path must have at least one segment")
                        .args;
                    if let Some(params) = *params {
                        let lifetimes = params.args.iter().filter_map(|arg| match arg {
                            GenericArg::Lifetime(lt) => Some(lt),
                            _ => None,
                        });
                        for bound in lifetimes {
                            if !bound.is_static() && !bound.is_elided() {
                                return;
                            }
                        }
                    }
                }
            }
        }
    }

    if let Some((elidable_lts, usages)) = could_use_elision(cx, sig.decl, body, trait_sig, generics.params) {
        if usages.iter().any(|usage| !usage.ident.span.eq_ctxt(span)) {
            return;
        }

        let lts = elidable_lts
            .iter()
            // In principle, the result of the call to `Node::ident` could be `unwrap`ped, as `DefId` should refer to a
            // `Node::GenericParam`.
            .filter_map(|&def_id| cx.tcx.hir().get_by_def_id(def_id).ident())
            .map(|ident| ident.to_string())
            .collect::<Vec<_>>()
            .join(", ");

        span_lint_and_then(
            cx,
            NEEDLESS_LIFETIMES,
            span.with_hi(sig.decl.output.span().hi()),
            &format!("the following explicit lifetimes could be elided: {lts}"),
            |diag| {
                if sig.header.is_async() {
                    // async functions have usages whose spans point at the lifetime declaration which messes up
                    // suggestions
                    return;
                };

                if let Some(suggestions) = elision_suggestions(cx, generics, &elidable_lts, &usages) {
                    diag.multipart_suggestion("elide the lifetimes", suggestions, Applicability::MachineApplicable);
                }
            },
        );
    }

    if report_extra_lifetimes {
        self::report_extra_lifetimes(cx, sig.decl, generics);
    }
}

fn elision_suggestions(
    cx: &LateContext<'_>,
    generics: &Generics<'_>,
    elidable_lts: &[LocalDefId],
    usages: &[Lifetime],
) -> Option<Vec<(Span, String)>> {
    let explicit_params = generics
        .params
        .iter()
        .filter(|param| !param.is_elided_lifetime() && !param.is_impl_trait())
        .collect::<Vec<_>>();

    let mut suggestions = if elidable_lts.len() == explicit_params.len() {
        // if all the params are elided remove the whole generic block
        //
        // fn x<'a>() {}
        //     ^^^^
        vec![(generics.span, String::new())]
    } else {
        elidable_lts
            .iter()
            .map(|&id| {
                let pos = explicit_params.iter().position(|param| param.def_id == id)?;
                let param = explicit_params.get(pos)?;

                let span = if let Some(next) = explicit_params.get(pos + 1) {
                    // fn x<'prev, 'a, 'next>() {}
                    //             ^^^^
                    param.span.until(next.span)
                } else {
                    // `pos` should be at least 1 here, because the param in position 0 would either have a `next`
                    // param or would have taken the `elidable_lts.len() == explicit_params.len()` branch.
                    let prev = explicit_params.get(pos - 1)?;

                    // fn x<'prev, 'a>() {}
                    //           ^^^^
                    param.span.with_lo(prev.span.hi())
                };

                Some((span, String::new()))
            })
            .collect::<Option<Vec<_>>>()?
    };

    suggestions.extend(
        usages
            .iter()
            .filter(|usage| named_lifetime(usage).map_or(false, |id| elidable_lts.contains(&id)))
            .map(|usage| {
                match cx.tcx.hir().get_parent(usage.hir_id) {
                    Node::Ty(Ty {
                        kind: TyKind::Ref(..), ..
                    }) => {
                        // expand `&'a T` to `&'a T`
                        //          ^^         ^^^
                        let span = cx
                            .sess()
                            .source_map()
                            .span_extend_while(usage.ident.span, |ch| ch.is_ascii_whitespace())
                            .unwrap_or(usage.ident.span);

                        (span, String::new())
                    },
                    // `T<'a>` and `impl Foo + 'a` should be replaced by `'_`
                    _ => (usage.ident.span, String::from("'_")),
                }
            }),
    );

    Some(suggestions)
}

// elision doesn't work for explicit self types, see rust-lang/rust#69064
fn explicit_self_type<'tcx>(cx: &LateContext<'tcx>, func: &FnDecl<'tcx>, ident: Option<Ident>) -> bool {
    if_chain! {
        if let Some(ident) = ident;
        if ident.name == kw::SelfLower;
        if !func.implicit_self.has_implicit_self();

        if let Some(self_ty) = func.inputs.first();
        then {
            let mut visitor = RefVisitor::new(cx);
            visitor.visit_ty(self_ty);

            !visitor.all_lts().is_empty()
        } else {
            false
        }
    }
}

fn named_lifetime(lt: &Lifetime) -> Option<LocalDefId> {
    match lt.res {
        LifetimeName::Param(id) if !lt.is_anonymous() => Some(id),
        _ => None,
    }
}

fn could_use_elision<'tcx>(
    cx: &LateContext<'tcx>,
    func: &'tcx FnDecl<'_>,
    body: Option<BodyId>,
    trait_sig: Option<&[Ident]>,
    named_generics: &'tcx [GenericParam<'_>],
) -> Option<(Vec<LocalDefId>, Vec<Lifetime>)> {
    // There are two scenarios where elision works:
    // * no output references, all input references have different LT
    // * output references, exactly one input reference with same LT
    // All lifetimes must be unnamed, 'static or defined without bounds on the
    // level of the current item.

    // check named LTs
    let allowed_lts = allowed_lts_from(named_generics);

    // these will collect all the lifetimes for references in arg/return types
    let mut input_visitor = RefVisitor::new(cx);
    let mut output_visitor = RefVisitor::new(cx);

    // extract lifetimes in input argument types
    for arg in func.inputs {
        input_visitor.visit_ty(arg);
    }
    // extract lifetimes in output type
    if let Return(ty) = func.output {
        output_visitor.visit_ty(ty);
    }
    for lt in named_generics {
        input_visitor.visit_generic_param(lt);
    }

    if input_visitor.abort() || output_visitor.abort() {
        return None;
    }

    let input_lts = input_visitor.lts;
    let output_lts = output_visitor.lts;

    if let Some(trait_sig) = trait_sig {
        if explicit_self_type(cx, func, trait_sig.first().copied()) {
            return None;
        }
    }

    if let Some(body_id) = body {
        let body = cx.tcx.hir().body(body_id);

        let first_ident = body.params.first().and_then(|param| param.pat.simple_ident());
        if explicit_self_type(cx, func, first_ident) {
            return None;
        }

        let mut checker = BodyLifetimeChecker {
            lifetimes_used_in_body: false,
        };
        checker.visit_expr(body.value);
        if checker.lifetimes_used_in_body {
            return None;
        }
    }

    // check for lifetimes from higher scopes
    for lt in input_lts.iter().chain(output_lts.iter()) {
        if let Some(id) = named_lifetime(lt)
            && !allowed_lts.contains(&id)
        {
            return None;
        }
    }

    // check for higher-ranked trait bounds
    if !input_visitor.nested_elision_site_lts.is_empty() || !output_visitor.nested_elision_site_lts.is_empty() {
        let allowed_lts: FxHashSet<_> = allowed_lts.iter().map(|id| cx.tcx.item_name(id.to_def_id())).collect();
        for lt in input_visitor.nested_elision_site_lts {
            if allowed_lts.contains(&lt.ident.name) {
                return None;
            }
        }
        for lt in output_visitor.nested_elision_site_lts {
            if allowed_lts.contains(&lt.ident.name) {
                return None;
            }
        }
    }

    // A lifetime can be newly elided if:
    // - It occurs only once among the inputs.
    // - If there are multiple input lifetimes, then the newly elided lifetime does not occur among the
    //   outputs (because eliding such an lifetime would create an ambiguity).
    let elidable_lts = named_lifetime_occurrences(&input_lts)
        .into_iter()
        .filter_map(|(def_id, occurrences)| {
            if occurrences == 1
                && (input_lts.len() == 1 || !output_lts.iter().any(|lt| named_lifetime(lt) == Some(def_id)))
            {
                Some(def_id)
            } else {
                None
            }
        })
        .collect::<Vec<_>>();

    if elidable_lts.is_empty() {
        return None;
    }

    let usages = itertools::chain(input_lts, output_lts).collect();

    Some((elidable_lts, usages))
}

fn allowed_lts_from(named_generics: &[GenericParam<'_>]) -> FxHashSet<LocalDefId> {
    named_generics
        .iter()
        .filter_map(|par| {
            if let GenericParamKind::Lifetime { .. } = par.kind {
                Some(par.def_id)
            } else {
                None
            }
        })
        .collect()
}

/// Number of times each named lifetime occurs in the given slice. Returns a vector to preserve
/// relative order.
#[must_use]
fn named_lifetime_occurrences(lts: &[Lifetime]) -> Vec<(LocalDefId, usize)> {
    let mut occurrences = Vec::new();
    for lt in lts {
        if let Some(curr_def_id) = named_lifetime(lt) {
            if let Some(pair) = occurrences
                .iter_mut()
                .find(|(prev_def_id, _)| *prev_def_id == curr_def_id)
            {
                pair.1 += 1;
            } else {
                occurrences.push((curr_def_id, 1));
            }
        }
    }
    occurrences
}

struct RefVisitor<'a, 'tcx> {
    cx: &'a LateContext<'tcx>,
    lts: Vec<Lifetime>,
    nested_elision_site_lts: Vec<Lifetime>,
    unelided_trait_object_lifetime: bool,
}

impl<'a, 'tcx> RefVisitor<'a, 'tcx> {
    fn new(cx: &'a LateContext<'tcx>) -> Self {
        Self {
            cx,
            lts: Vec::new(),
            nested_elision_site_lts: Vec::new(),
            unelided_trait_object_lifetime: false,
        }
    }

    fn all_lts(&self) -> Vec<Lifetime> {
        self.lts
            .iter()
            .chain(self.nested_elision_site_lts.iter())
            .copied()
            .collect::<Vec<_>>()
    }

    fn abort(&self) -> bool {
        self.unelided_trait_object_lifetime
    }
}

impl<'a, 'tcx> Visitor<'tcx> for RefVisitor<'a, 'tcx> {
    // for lifetimes as parameters of generics
    fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) {
        self.lts.push(*lifetime);
    }

    fn visit_poly_trait_ref(&mut self, poly_tref: &'tcx PolyTraitRef<'tcx>) {
        let trait_ref = &poly_tref.trait_ref;
        if let Some(id) = trait_ref.trait_def_id() && lang_items::FN_TRAITS.iter().any(|&item| {
            self.cx.tcx.lang_items().get(item) == Some(id)
        }) {
            let mut sub_visitor = RefVisitor::new(self.cx);
            sub_visitor.visit_trait_ref(trait_ref);
            self.nested_elision_site_lts.append(&mut sub_visitor.all_lts());
        } else {
            walk_poly_trait_ref(self, poly_tref);
        }
    }

    fn visit_ty(&mut self, ty: &'tcx Ty<'_>) {
        match ty.kind {
            TyKind::OpaqueDef(item, bounds, _) => {
                let map = self.cx.tcx.hir();
                let item = map.item(item);
                let len = self.lts.len();
                walk_item(self, item);
                self.lts.truncate(len);
                self.lts.extend(bounds.iter().filter_map(|bound| match bound {
                    GenericArg::Lifetime(&l) => Some(l),
                    _ => None,
                }));
            },
            TyKind::BareFn(&BareFnTy { decl, .. }) => {
                let mut sub_visitor = RefVisitor::new(self.cx);
                sub_visitor.visit_fn_decl(decl);
                self.nested_elision_site_lts.append(&mut sub_visitor.all_lts());
            },
            TyKind::TraitObject(bounds, lt, _) => {
                if !lt.is_elided() {
                    self.unelided_trait_object_lifetime = true;
                }
                for bound in bounds {
                    self.visit_poly_trait_ref(bound);
                }
            },
            _ => walk_ty(self, ty),
        }
    }
}

/// Are any lifetimes mentioned in the `where` clause? If so, we don't try to
/// reason about elision.
fn has_where_lifetimes<'tcx>(cx: &LateContext<'tcx>, generics: &'tcx Generics<'_>) -> bool {
    for predicate in generics.predicates {
        match *predicate {
            WherePredicate::RegionPredicate(..) => return true,
            WherePredicate::BoundPredicate(ref pred) => {
                // a predicate like F: Trait or F: for<'a> Trait<'a>
                let mut visitor = RefVisitor::new(cx);
                // walk the type F, it may not contain LT refs
                walk_ty(&mut visitor, pred.bounded_ty);
                if !visitor.all_lts().is_empty() {
                    return true;
                }
                // if the bounds define new lifetimes, they are fine to occur
                let allowed_lts = allowed_lts_from(pred.bound_generic_params);
                // now walk the bounds
                for bound in pred.bounds.iter() {
                    walk_param_bound(&mut visitor, bound);
                }
                // and check that all lifetimes are allowed
                for lt in visitor.all_lts() {
                    if let Some(id) = named_lifetime(&lt)
                        && !allowed_lts.contains(&id)
                    {
                        return true;
                    }
                }
            },
            WherePredicate::EqPredicate(ref pred) => {
                let mut visitor = RefVisitor::new(cx);
                walk_ty(&mut visitor, pred.lhs_ty);
                walk_ty(&mut visitor, pred.rhs_ty);
                if !visitor.lts.is_empty() {
                    return true;
                }
            },
        }
    }
    false
}

struct LifetimeChecker<'cx, 'tcx, F> {
    cx: &'cx LateContext<'tcx>,
    map: FxHashMap<Symbol, Span>,
    phantom: std::marker::PhantomData<F>,
}

impl<'cx, 'tcx, F> LifetimeChecker<'cx, 'tcx, F> {
    fn new(cx: &'cx LateContext<'tcx>, map: FxHashMap<Symbol, Span>) -> LifetimeChecker<'cx, 'tcx, F> {
        Self {
            cx,
            map,
            phantom: std::marker::PhantomData,
        }
    }
}

impl<'cx, 'tcx, F> Visitor<'tcx> for LifetimeChecker<'cx, 'tcx, F>
where
    F: NestedFilter<'tcx>,
{
    type Map = rustc_middle::hir::map::Map<'tcx>;
    type NestedFilter = F;

    // for lifetimes as parameters of generics
    fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) {
        self.map.remove(&lifetime.ident.name);
    }

    fn visit_generic_param(&mut self, param: &'tcx GenericParam<'_>) {
        // don't actually visit `<'a>` or `<'a: 'b>`
        // we've already visited the `'a` declarations and
        // don't want to spuriously remove them
        // `'b` in `'a: 'b` is useless unless used elsewhere in
        // a non-lifetime bound
        if let GenericParamKind::Type { .. } = param.kind {
            walk_generic_param(self, param);
        }
    }

    fn nested_visit_map(&mut self) -> Self::Map {
        self.cx.tcx.hir()
    }
}

fn report_extra_lifetimes<'tcx>(cx: &LateContext<'tcx>, func: &'tcx FnDecl<'_>, generics: &'tcx Generics<'_>) {
    let hs = generics
        .params
        .iter()
        .filter_map(|par| match par.kind {
            GenericParamKind::Lifetime {
                kind: LifetimeParamKind::Explicit,
            } => Some((par.name.ident().name, par.span)),
            _ => None,
        })
        .collect();
    let mut checker = LifetimeChecker::<hir_nested_filter::None>::new(cx, hs);

    walk_generics(&mut checker, generics);
    walk_fn_decl(&mut checker, func);

    for &v in checker.map.values() {
        span_lint(
            cx,
            EXTRA_UNUSED_LIFETIMES,
            v,
            "this lifetime isn't used in the function definition",
        );
    }
}

fn report_extra_impl_lifetimes<'tcx>(cx: &LateContext<'tcx>, impl_: &'tcx Impl<'_>) {
    let hs = impl_
        .generics
        .params
        .iter()
        .filter_map(|par| match par.kind {
            GenericParamKind::Lifetime {
                kind: LifetimeParamKind::Explicit,
            } => Some((par.name.ident().name, par.span)),
            _ => None,
        })
        .collect();
    let mut checker = LifetimeChecker::<middle_nested_filter::All>::new(cx, hs);

    walk_generics(&mut checker, impl_.generics);
    if let Some(ref trait_ref) = impl_.of_trait {
        walk_trait_ref(&mut checker, trait_ref);
    }
    walk_ty(&mut checker, impl_.self_ty);
    for item in impl_.items {
        walk_impl_item_ref(&mut checker, item);
    }

    for &v in checker.map.values() {
        span_lint(cx, EXTRA_UNUSED_LIFETIMES, v, "this lifetime isn't used in the impl");
    }
}

struct BodyLifetimeChecker {
    lifetimes_used_in_body: bool,
}

impl<'tcx> Visitor<'tcx> for BodyLifetimeChecker {
    // for lifetimes as parameters of generics
    fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) {
        if !lifetime.is_anonymous() && lifetime.ident.name != kw::StaticLifetime {
            self.lifetimes_used_in_body = true;
        }
    }
}