summaryrefslogtreecommitdiffstats
path: root/src/tools/rust-analyzer/crates/hir-ty/src/infer.rs
blob: 6b59f1c20daa225b9d4f283bfc4a36a48ed0df3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
//! Type inference, i.e. the process of walking through the code and determining
//! the type of each expression and pattern.
//!
//! For type inference, compare the implementations in rustc (the various
//! check_* methods in rustc_hir_analysis/check/mod.rs are a good entry point) and
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
//! inference here is the `infer` function, which infers the types of all
//! expressions in a given function.
//!
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
//! which represent currently unknown types; as we walk through the expressions,
//! we might determine that certain variables need to be equal to each other, or
//! to certain types. To record this, we use the union-find implementation from
//! the `ena` crate, which is extracted from rustc.

use std::ops::Index;
use std::sync::Arc;

use chalk_ir::{cast::Cast, ConstValue, DebruijnIndex, Mutability, Safety, Scalar, TypeFlags};
use hir_def::{
    body::Body,
    builtin_type::{BuiltinInt, BuiltinType, BuiltinUint},
    data::{ConstData, StaticData},
    expr::{BindingAnnotation, ExprId, ExprOrPatId, PatId},
    lang_item::LangItemTarget,
    layout::Integer,
    path::{path, Path},
    resolver::{HasResolver, ResolveValueResult, Resolver, TypeNs, ValueNs},
    type_ref::TypeRef,
    AdtId, AssocItemId, DefWithBodyId, EnumVariantId, FieldId, FunctionId, HasModule,
    ItemContainerId, Lookup, TraitId, TypeAliasId, VariantId,
};
use hir_expand::name::{name, Name};
use itertools::Either;
use la_arena::ArenaMap;
use rustc_hash::FxHashMap;
use stdx::always;

use crate::{
    db::HirDatabase, fold_tys, fold_tys_and_consts, infer::coerce::CoerceMany,
    lower::ImplTraitLoweringMode, to_assoc_type_id, AliasEq, AliasTy, Const, DomainGoal,
    GenericArg, Goal, ImplTraitId, InEnvironment, Interner, ProjectionTy, Substitution,
    TraitEnvironment, TraitRef, Ty, TyBuilder, TyExt, TyKind,
};

// This lint has a false positive here. See the link below for details.
//
// https://github.com/rust-lang/rust/issues/57411
#[allow(unreachable_pub)]
pub use coerce::could_coerce;
#[allow(unreachable_pub)]
pub use unify::could_unify;

pub(crate) mod unify;
mod path;
mod expr;
mod pat;
mod coerce;
mod closure;

/// The entry point of type inference.
pub(crate) fn infer_query(db: &dyn HirDatabase, def: DefWithBodyId) -> Arc<InferenceResult> {
    let _p = profile::span("infer_query");
    let resolver = def.resolver(db.upcast());
    let body = db.body(def);
    let mut ctx = InferenceContext::new(db, def, &body, resolver);

    match def {
        DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)),
        DefWithBodyId::FunctionId(f) => ctx.collect_fn(f),
        DefWithBodyId::StaticId(s) => ctx.collect_static(&db.static_data(s)),
        DefWithBodyId::VariantId(v) => {
            ctx.return_ty = TyBuilder::builtin(match db.enum_data(v.parent).variant_body_type() {
                hir_def::layout::IntegerType::Pointer(signed) => match signed {
                    true => BuiltinType::Int(BuiltinInt::Isize),
                    false => BuiltinType::Uint(BuiltinUint::Usize),
                },
                hir_def::layout::IntegerType::Fixed(size, signed) => match signed {
                    true => BuiltinType::Int(match size {
                        Integer::I8 => BuiltinInt::I8,
                        Integer::I16 => BuiltinInt::I16,
                        Integer::I32 => BuiltinInt::I32,
                        Integer::I64 => BuiltinInt::I64,
                        Integer::I128 => BuiltinInt::I128,
                    }),
                    false => BuiltinType::Uint(match size {
                        Integer::I8 => BuiltinUint::U8,
                        Integer::I16 => BuiltinUint::U16,
                        Integer::I32 => BuiltinUint::U32,
                        Integer::I64 => BuiltinUint::U64,
                        Integer::I128 => BuiltinUint::U128,
                    }),
                },
            });
        }
    }

    ctx.infer_body();

    Arc::new(ctx.resolve_all())
}

/// Fully normalize all the types found within `ty` in context of `owner` body definition.
///
/// This is appropriate to use only after type-check: it assumes
/// that normalization will succeed, for example.
pub(crate) fn normalize(db: &dyn HirDatabase, owner: DefWithBodyId, ty: Ty) -> Ty {
    if !ty.data(Interner).flags.intersects(TypeFlags::HAS_PROJECTION) {
        return ty;
    }
    let krate = owner.module(db.upcast()).krate();
    let trait_env = owner
        .as_generic_def_id()
        .map_or_else(|| Arc::new(TraitEnvironment::empty(krate)), |d| db.trait_environment(d));
    let mut table = unify::InferenceTable::new(db, trait_env);

    let ty_with_vars = table.normalize_associated_types_in(ty);
    table.resolve_obligations_as_possible();
    table.propagate_diverging_flag();
    table.resolve_completely(ty_with_vars)
}

/// Binding modes inferred for patterns.
/// <https://doc.rust-lang.org/reference/patterns.html#binding-modes>
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum BindingMode {
    Move,
    Ref(Mutability),
}

impl BindingMode {
    fn convert(annotation: BindingAnnotation) -> BindingMode {
        match annotation {
            BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
            BindingAnnotation::Ref => BindingMode::Ref(Mutability::Not),
            BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
        }
    }
}

impl Default for BindingMode {
    fn default() -> Self {
        BindingMode::Move
    }
}

/// Used to generalize patterns and assignee expressions.
trait PatLike: Into<ExprOrPatId> + Copy {
    type BindingMode: Copy;

    fn infer(
        this: &mut InferenceContext<'_>,
        id: Self,
        expected_ty: &Ty,
        default_bm: Self::BindingMode,
    ) -> Ty;
}

impl PatLike for ExprId {
    type BindingMode = ();

    fn infer(
        this: &mut InferenceContext<'_>,
        id: Self,
        expected_ty: &Ty,
        _: Self::BindingMode,
    ) -> Ty {
        this.infer_assignee_expr(id, expected_ty)
    }
}

impl PatLike for PatId {
    type BindingMode = BindingMode;

    fn infer(
        this: &mut InferenceContext<'_>,
        id: Self,
        expected_ty: &Ty,
        default_bm: Self::BindingMode,
    ) -> Ty {
        this.infer_pat(id, expected_ty, default_bm)
    }
}

#[derive(Debug)]
pub(crate) struct InferOk<T> {
    value: T,
    goals: Vec<InEnvironment<Goal>>,
}

impl<T> InferOk<T> {
    fn map<U>(self, f: impl FnOnce(T) -> U) -> InferOk<U> {
        InferOk { value: f(self.value), goals: self.goals }
    }
}

#[derive(Debug)]
pub(crate) struct TypeError;
pub(crate) type InferResult<T> = Result<InferOk<T>, TypeError>;

#[derive(Debug, PartialEq, Eq, Clone)]
pub enum InferenceDiagnostic {
    NoSuchField { expr: ExprId },
    PrivateField { expr: ExprId, field: FieldId },
    PrivateAssocItem { id: ExprOrPatId, item: AssocItemId },
    BreakOutsideOfLoop { expr: ExprId, is_break: bool },
    MismatchedArgCount { call_expr: ExprId, expected: usize, found: usize },
}

/// A mismatch between an expected and an inferred type.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TypeMismatch {
    pub expected: Ty,
    pub actual: Ty,
}

#[derive(Clone, PartialEq, Eq, Debug)]
struct InternedStandardTypes {
    unknown: Ty,
    bool_: Ty,
    unit: Ty,
}

impl Default for InternedStandardTypes {
    fn default() -> Self {
        InternedStandardTypes {
            unknown: TyKind::Error.intern(Interner),
            bool_: TyKind::Scalar(Scalar::Bool).intern(Interner),
            unit: TyKind::Tuple(0, Substitution::empty(Interner)).intern(Interner),
        }
    }
}
/// Represents coercing a value to a different type of value.
///
/// We transform values by following a number of `Adjust` steps in order.
/// See the documentation on variants of `Adjust` for more details.
///
/// Here are some common scenarios:
///
/// 1. The simplest cases are where a pointer is not adjusted fat vs thin.
///    Here the pointer will be dereferenced N times (where a dereference can
///    happen to raw or borrowed pointers or any smart pointer which implements
///    Deref, including Box<_>). The types of dereferences is given by
///    `autoderefs`. It can then be auto-referenced zero or one times, indicated
///    by `autoref`, to either a raw or borrowed pointer. In these cases unsize is
///    `false`.
///
/// 2. A thin-to-fat coercion involves unsizing the underlying data. We start
///    with a thin pointer, deref a number of times, unsize the underlying data,
///    then autoref. The 'unsize' phase may change a fixed length array to a
///    dynamically sized one, a concrete object to a trait object, or statically
///    sized struct to a dynamically sized one. E.g., &[i32; 4] -> &[i32] is
///    represented by:
///
///    ```
///    Deref(None) -> [i32; 4],
///    Borrow(AutoBorrow::Ref) -> &[i32; 4],
///    Unsize -> &[i32],
///    ```
///
///    Note that for a struct, the 'deep' unsizing of the struct is not recorded.
///    E.g., `struct Foo<T> { x: T }` we can coerce &Foo<[i32; 4]> to &Foo<[i32]>
///    The autoderef and -ref are the same as in the above example, but the type
///    stored in `unsize` is `Foo<[i32]>`, we don't store any further detail about
///    the underlying conversions from `[i32; 4]` to `[i32]`.
///
/// 3. Coercing a `Box<T>` to `Box<dyn Trait>` is an interesting special case. In
///    that case, we have the pointer we need coming in, so there are no
///    autoderefs, and no autoref. Instead we just do the `Unsize` transformation.
///    At some point, of course, `Box` should move out of the compiler, in which
///    case this is analogous to transforming a struct. E.g., Box<[i32; 4]> ->
///    Box<[i32]> is an `Adjust::Unsize` with the target `Box<[i32]>`.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Adjustment {
    pub kind: Adjust,
    pub target: Ty,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Adjust {
    /// Go from ! to any type.
    NeverToAny,
    /// Dereference once, producing a place.
    Deref(Option<OverloadedDeref>),
    /// Take the address and produce either a `&` or `*` pointer.
    Borrow(AutoBorrow),
    Pointer(PointerCast),
}

/// An overloaded autoderef step, representing a `Deref(Mut)::deref(_mut)`
/// call, with the signature `&'a T -> &'a U` or `&'a mut T -> &'a mut U`.
/// The target type is `U` in both cases, with the region and mutability
/// being those shared by both the receiver and the returned reference.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct OverloadedDeref(pub Mutability);

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum AutoBorrow {
    /// Converts from T to &T.
    Ref(Mutability),
    /// Converts from T to *T.
    RawPtr(Mutability),
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum PointerCast {
    /// Go from a fn-item type to a fn-pointer type.
    ReifyFnPointer,

    /// Go from a safe fn pointer to an unsafe fn pointer.
    UnsafeFnPointer,

    /// Go from a non-capturing closure to an fn pointer or an unsafe fn pointer.
    /// It cannot convert a closure that requires unsafe.
    ClosureFnPointer(Safety),

    /// Go from a mut raw pointer to a const raw pointer.
    MutToConstPointer,

    #[allow(dead_code)]
    /// Go from `*const [T; N]` to `*const T`
    ArrayToPointer,

    /// Unsize a pointer/reference value, e.g., `&[T; n]` to
    /// `&[T]`. Note that the source could be a thin or fat pointer.
    /// This will do things like convert thin pointers to fat
    /// pointers, or convert structs containing thin pointers to
    /// structs containing fat pointers, or convert between fat
    /// pointers. We don't store the details of how the transform is
    /// done (in fact, we don't know that, because it might depend on
    /// the precise type parameters). We just store the target
    /// type. Codegen backends and miri figure out what has to be done
    /// based on the precise source/target type at hand.
    Unsize,
}

/// The result of type inference: A mapping from expressions and patterns to types.
#[derive(Clone, PartialEq, Eq, Debug, Default)]
pub struct InferenceResult {
    /// For each method call expr, records the function it resolves to.
    method_resolutions: FxHashMap<ExprId, (FunctionId, Substitution)>,
    /// For each field access expr, records the field it resolves to.
    field_resolutions: FxHashMap<ExprId, FieldId>,
    /// For each struct literal or pattern, records the variant it resolves to.
    variant_resolutions: FxHashMap<ExprOrPatId, VariantId>,
    /// For each associated item record what it resolves to
    assoc_resolutions: FxHashMap<ExprOrPatId, (AssocItemId, Substitution)>,
    pub diagnostics: Vec<InferenceDiagnostic>,
    pub type_of_expr: ArenaMap<ExprId, Ty>,
    /// For each pattern record the type it resolves to.
    ///
    /// **Note**: When a pattern type is resolved it may still contain
    /// unresolved or missing subpatterns or subpatterns of mismatched types.
    pub type_of_pat: ArenaMap<PatId, Ty>,
    type_mismatches: FxHashMap<ExprOrPatId, TypeMismatch>,
    /// Interned common types to return references to.
    standard_types: InternedStandardTypes,
    /// Stores the types which were implicitly dereferenced in pattern binding modes.
    pub pat_adjustments: FxHashMap<PatId, Vec<Ty>>,
    pub pat_binding_modes: FxHashMap<PatId, BindingMode>,
    pub expr_adjustments: FxHashMap<ExprId, Vec<Adjustment>>,
}

impl InferenceResult {
    pub fn method_resolution(&self, expr: ExprId) -> Option<(FunctionId, Substitution)> {
        self.method_resolutions.get(&expr).cloned()
    }
    pub fn field_resolution(&self, expr: ExprId) -> Option<FieldId> {
        self.field_resolutions.get(&expr).copied()
    }
    pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantId> {
        self.variant_resolutions.get(&id.into()).copied()
    }
    pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantId> {
        self.variant_resolutions.get(&id.into()).copied()
    }
    pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<(AssocItemId, Substitution)> {
        self.assoc_resolutions.get(&id.into()).cloned()
    }
    pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<(AssocItemId, Substitution)> {
        self.assoc_resolutions.get(&id.into()).cloned()
    }
    pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
        self.type_mismatches.get(&expr.into())
    }
    pub fn type_mismatch_for_pat(&self, pat: PatId) -> Option<&TypeMismatch> {
        self.type_mismatches.get(&pat.into())
    }
    pub fn expr_type_mismatches(&self) -> impl Iterator<Item = (ExprId, &TypeMismatch)> {
        self.type_mismatches.iter().filter_map(|(expr_or_pat, mismatch)| match *expr_or_pat {
            ExprOrPatId::ExprId(expr) => Some((expr, mismatch)),
            _ => None,
        })
    }
    pub fn pat_type_mismatches(&self) -> impl Iterator<Item = (PatId, &TypeMismatch)> {
        self.type_mismatches.iter().filter_map(|(expr_or_pat, mismatch)| match *expr_or_pat {
            ExprOrPatId::PatId(pat) => Some((pat, mismatch)),
            _ => None,
        })
    }
}

impl Index<ExprId> for InferenceResult {
    type Output = Ty;

    fn index(&self, expr: ExprId) -> &Ty {
        self.type_of_expr.get(expr).unwrap_or(&self.standard_types.unknown)
    }
}

impl Index<PatId> for InferenceResult {
    type Output = Ty;

    fn index(&self, pat: PatId) -> &Ty {
        self.type_of_pat.get(pat).unwrap_or(&self.standard_types.unknown)
    }
}

/// The inference context contains all information needed during type inference.
#[derive(Clone, Debug)]
pub(crate) struct InferenceContext<'a> {
    pub(crate) db: &'a dyn HirDatabase,
    pub(crate) owner: DefWithBodyId,
    pub(crate) body: &'a Body,
    pub(crate) resolver: Resolver,
    table: unify::InferenceTable<'a>,
    trait_env: Arc<TraitEnvironment>,
    pub(crate) result: InferenceResult,
    /// The return type of the function being inferred, the closure or async block if we're
    /// currently within one.
    ///
    /// We might consider using a nested inference context for checking
    /// closures, but currently this is the only field that will change there,
    /// so it doesn't make sense.
    return_ty: Ty,
    /// The resume type and the yield type, respectively, of the generator being inferred.
    resume_yield_tys: Option<(Ty, Ty)>,
    diverges: Diverges,
    breakables: Vec<BreakableContext>,
}

#[derive(Clone, Debug)]
struct BreakableContext {
    /// Whether this context contains at least one break expression.
    may_break: bool,
    /// The coercion target of the context.
    coerce: CoerceMany,
    /// The optional label of the context.
    label: Option<name::Name>,
    kind: BreakableKind,
}

#[derive(Clone, Debug)]
enum BreakableKind {
    Block,
    Loop,
    /// A border is something like an async block, closure etc. Anything that prevents
    /// breaking/continuing through
    Border,
}

fn find_breakable<'c>(
    ctxs: &'c mut [BreakableContext],
    label: Option<&name::Name>,
) -> Option<&'c mut BreakableContext> {
    let mut ctxs = ctxs
        .iter_mut()
        .rev()
        .take_while(|it| matches!(it.kind, BreakableKind::Block | BreakableKind::Loop));
    match label {
        Some(_) => ctxs.find(|ctx| ctx.label.as_ref() == label),
        None => ctxs.find(|ctx| matches!(ctx.kind, BreakableKind::Loop)),
    }
}

fn find_continuable<'c>(
    ctxs: &'c mut [BreakableContext],
    label: Option<&name::Name>,
) -> Option<&'c mut BreakableContext> {
    match label {
        Some(_) => find_breakable(ctxs, label).filter(|it| matches!(it.kind, BreakableKind::Loop)),
        None => find_breakable(ctxs, label),
    }
}

impl<'a> InferenceContext<'a> {
    fn new(
        db: &'a dyn HirDatabase,
        owner: DefWithBodyId,
        body: &'a Body,
        resolver: Resolver,
    ) -> Self {
        let krate = owner.module(db.upcast()).krate();
        let trait_env = owner
            .as_generic_def_id()
            .map_or_else(|| Arc::new(TraitEnvironment::empty(krate)), |d| db.trait_environment(d));
        InferenceContext {
            result: InferenceResult::default(),
            table: unify::InferenceTable::new(db, trait_env.clone()),
            trait_env,
            return_ty: TyKind::Error.intern(Interner), // set in collect_* calls
            resume_yield_tys: None,
            db,
            owner,
            body,
            resolver,
            diverges: Diverges::Maybe,
            breakables: Vec::new(),
        }
    }

    fn resolve_all(self) -> InferenceResult {
        let InferenceContext { mut table, mut result, .. } = self;

        table.fallback_if_possible();

        // FIXME resolve obligations as well (use Guidance if necessary)
        table.resolve_obligations_as_possible();

        // make sure diverging type variables are marked as such
        table.propagate_diverging_flag();
        for ty in result.type_of_expr.values_mut() {
            *ty = table.resolve_completely(ty.clone());
        }
        for ty in result.type_of_pat.values_mut() {
            *ty = table.resolve_completely(ty.clone());
        }
        for mismatch in result.type_mismatches.values_mut() {
            mismatch.expected = table.resolve_completely(mismatch.expected.clone());
            mismatch.actual = table.resolve_completely(mismatch.actual.clone());
        }
        for (_, subst) in result.method_resolutions.values_mut() {
            *subst = table.resolve_completely(subst.clone());
        }
        for (_, subst) in result.assoc_resolutions.values_mut() {
            *subst = table.resolve_completely(subst.clone());
        }
        for adjustment in result.expr_adjustments.values_mut().flatten() {
            adjustment.target = table.resolve_completely(adjustment.target.clone());
        }
        for adjustment in result.pat_adjustments.values_mut().flatten() {
            *adjustment = table.resolve_completely(adjustment.clone());
        }
        result
    }

    fn collect_const(&mut self, data: &ConstData) {
        self.return_ty = self.make_ty(&data.type_ref);
    }

    fn collect_static(&mut self, data: &StaticData) {
        self.return_ty = self.make_ty(&data.type_ref);
    }

    fn collect_fn(&mut self, func: FunctionId) {
        let data = self.db.function_data(func);
        let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver)
            .with_impl_trait_mode(ImplTraitLoweringMode::Param);
        let mut param_tys =
            data.params.iter().map(|(_, type_ref)| ctx.lower_ty(type_ref)).collect::<Vec<_>>();
        // Check if function contains a va_list, if it does then we append it to the parameter types
        // that are collected from the function data
        if data.is_varargs() {
            let va_list_ty = match self.resolve_va_list() {
                Some(va_list) => TyBuilder::adt(self.db, va_list)
                    .fill_with_defaults(self.db, || self.table.new_type_var())
                    .build(),
                None => self.err_ty(),
            };

            param_tys.push(va_list_ty)
        }
        for (ty, pat) in param_tys.into_iter().zip(self.body.params.iter()) {
            let ty = self.insert_type_vars(ty);
            let ty = self.normalize_associated_types_in(ty);

            self.infer_pat(*pat, &ty, BindingMode::default());
        }
        let error_ty = &TypeRef::Error;
        let return_ty = if data.has_async_kw() {
            data.async_ret_type.as_deref().unwrap_or(error_ty)
        } else {
            &*data.ret_type
        };

        let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver)
            .with_impl_trait_mode(ImplTraitLoweringMode::Opaque);
        let return_ty = ctx.lower_ty(return_ty);
        let return_ty = self.insert_type_vars(return_ty);

        let return_ty = if let Some(rpits) = self.db.return_type_impl_traits(func) {
            // RPIT opaque types use substitution of their parent function.
            let fn_placeholders = TyBuilder::placeholder_subst(self.db, func);
            fold_tys(
                return_ty,
                |ty, _| {
                    let opaque_ty_id = match ty.kind(Interner) {
                        TyKind::OpaqueType(opaque_ty_id, _) => *opaque_ty_id,
                        _ => return ty,
                    };
                    let idx = match self.db.lookup_intern_impl_trait_id(opaque_ty_id.into()) {
                        ImplTraitId::ReturnTypeImplTrait(_, idx) => idx,
                        _ => unreachable!(),
                    };
                    let bounds = (*rpits).map_ref(|rpits| {
                        rpits.impl_traits[idx as usize].bounds.map_ref(|it| it.into_iter())
                    });
                    let var = self.table.new_type_var();
                    let var_subst = Substitution::from1(Interner, var.clone());
                    for bound in bounds {
                        let predicate =
                            bound.map(|it| it.cloned()).substitute(Interner, &fn_placeholders);
                        let (var_predicate, binders) = predicate
                            .substitute(Interner, &var_subst)
                            .into_value_and_skipped_binders();
                        always!(binders.is_empty(Interner)); // quantified where clauses not yet handled
                        self.push_obligation(var_predicate.cast(Interner));
                    }
                    var
                },
                DebruijnIndex::INNERMOST,
            )
        } else {
            return_ty
        };

        self.return_ty = self.normalize_associated_types_in(return_ty);
    }

    fn infer_body(&mut self) {
        self.infer_expr_coerce(self.body.body_expr, &Expectation::has_type(self.return_ty.clone()));
    }

    fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
        self.result.type_of_expr.insert(expr, ty);
    }

    fn write_expr_adj(&mut self, expr: ExprId, adjustments: Vec<Adjustment>) {
        self.result.expr_adjustments.insert(expr, adjustments);
    }

    fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId, subst: Substitution) {
        self.result.method_resolutions.insert(expr, (func, subst));
    }

    fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) {
        self.result.variant_resolutions.insert(id, variant);
    }

    fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId, subs: Substitution) {
        self.result.assoc_resolutions.insert(id, (item, subs));
    }

    fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
        self.result.type_of_pat.insert(pat, ty);
    }

    fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
        self.result.diagnostics.push(diagnostic);
    }

    fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
        // FIXME use right resolver for block
        let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver);
        let ty = ctx.lower_ty(type_ref);
        let ty = self.insert_type_vars(ty);
        self.normalize_associated_types_in(ty)
    }

    fn err_ty(&self) -> Ty {
        self.result.standard_types.unknown.clone()
    }

    /// Replaces ConstScalar::Unknown by a new type var, so we can maybe still infer it.
    fn insert_const_vars_shallow(&mut self, c: Const) -> Const {
        let data = c.data(Interner);
        match data.value {
            ConstValue::Concrete(cc) => match cc.interned {
                hir_def::type_ref::ConstScalar::Unknown => {
                    self.table.new_const_var(data.ty.clone())
                }
                _ => c,
            },
            _ => c,
        }
    }

    /// Replaces `Ty::Error` by a new type var, so we can maybe still infer it.
    fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
        match ty.kind(Interner) {
            TyKind::Error => self.table.new_type_var(),
            TyKind::InferenceVar(..) => {
                let ty_resolved = self.resolve_ty_shallow(&ty);
                if ty_resolved.is_unknown() {
                    self.table.new_type_var()
                } else {
                    ty
                }
            }
            _ => ty,
        }
    }

    fn insert_type_vars(&mut self, ty: Ty) -> Ty {
        fold_tys_and_consts(
            ty,
            |x, _| match x {
                Either::Left(ty) => Either::Left(self.insert_type_vars_shallow(ty)),
                Either::Right(c) => Either::Right(self.insert_const_vars_shallow(c)),
            },
            DebruijnIndex::INNERMOST,
        )
    }

    fn push_obligation(&mut self, o: DomainGoal) {
        self.table.register_obligation(o.cast(Interner));
    }

    fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
        self.table.unify(ty1, ty2)
    }

    /// Recurses through the given type, normalizing associated types mentioned
    /// in it by replacing them by type variables and registering obligations to
    /// resolve later. This should be done once for every type we get from some
    /// type annotation (e.g. from a let type annotation, field type or function
    /// call). `make_ty` handles this already, but e.g. for field types we need
    /// to do it as well.
    fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
        self.table.normalize_associated_types_in(ty)
    }

    fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty {
        self.table.resolve_ty_shallow(ty)
    }

    fn resolve_associated_type(&mut self, inner_ty: Ty, assoc_ty: Option<TypeAliasId>) -> Ty {
        self.resolve_associated_type_with_params(inner_ty, assoc_ty, &[])
    }

    fn resolve_associated_type_with_params(
        &mut self,
        inner_ty: Ty,
        assoc_ty: Option<TypeAliasId>,
        // FIXME(GATs): these are args for the trait ref, args for assoc type itself should be
        // handled when we support them.
        params: &[GenericArg],
    ) -> Ty {
        match assoc_ty {
            Some(res_assoc_ty) => {
                let trait_ = match res_assoc_ty.lookup(self.db.upcast()).container {
                    hir_def::ItemContainerId::TraitId(trait_) => trait_,
                    _ => panic!("resolve_associated_type called with non-associated type"),
                };
                let ty = self.table.new_type_var();
                let mut param_iter = params.iter().cloned();
                let trait_ref = TyBuilder::trait_ref(self.db, trait_)
                    .push(inner_ty)
                    .fill(|_| param_iter.next().unwrap())
                    .build();
                let alias_eq = AliasEq {
                    alias: AliasTy::Projection(ProjectionTy {
                        associated_ty_id: to_assoc_type_id(res_assoc_ty),
                        substitution: trait_ref.substitution.clone(),
                    }),
                    ty: ty.clone(),
                };
                self.push_obligation(trait_ref.cast(Interner));
                self.push_obligation(alias_eq.cast(Interner));
                ty
            }
            None => self.err_ty(),
        }
    }

    fn resolve_variant(&mut self, path: Option<&Path>, value_ns: bool) -> (Ty, Option<VariantId>) {
        let path = match path {
            Some(path) => path,
            None => return (self.err_ty(), None),
        };
        let resolver = &self.resolver;
        let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver);
        // FIXME: this should resolve assoc items as well, see this example:
        // https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521
        let (resolution, unresolved) = if value_ns {
            match resolver.resolve_path_in_value_ns(self.db.upcast(), path.mod_path()) {
                Some(ResolveValueResult::ValueNs(value)) => match value {
                    ValueNs::EnumVariantId(var) => {
                        let substs = ctx.substs_from_path(path, var.into(), true);
                        let ty = self.db.ty(var.parent.into());
                        let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
                        return (ty, Some(var.into()));
                    }
                    ValueNs::StructId(strukt) => {
                        let substs = ctx.substs_from_path(path, strukt.into(), true);
                        let ty = self.db.ty(strukt.into());
                        let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
                        return (ty, Some(strukt.into()));
                    }
                    ValueNs::ImplSelf(impl_id) => (TypeNs::SelfType(impl_id), None),
                    _ => return (self.err_ty(), None),
                },
                Some(ResolveValueResult::Partial(typens, unresolved)) => (typens, Some(unresolved)),
                None => return (self.err_ty(), None),
            }
        } else {
            match resolver.resolve_path_in_type_ns(self.db.upcast(), path.mod_path()) {
                Some(it) => it,
                None => return (self.err_ty(), None),
            }
        };
        return match resolution {
            TypeNs::AdtId(AdtId::StructId(strukt)) => {
                let substs = ctx.substs_from_path(path, strukt.into(), true);
                let ty = self.db.ty(strukt.into());
                let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
                forbid_unresolved_segments((ty, Some(strukt.into())), unresolved)
            }
            TypeNs::AdtId(AdtId::UnionId(u)) => {
                let substs = ctx.substs_from_path(path, u.into(), true);
                let ty = self.db.ty(u.into());
                let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
                forbid_unresolved_segments((ty, Some(u.into())), unresolved)
            }
            TypeNs::EnumVariantId(var) => {
                let substs = ctx.substs_from_path(path, var.into(), true);
                let ty = self.db.ty(var.parent.into());
                let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
                forbid_unresolved_segments((ty, Some(var.into())), unresolved)
            }
            TypeNs::SelfType(impl_id) => {
                let generics = crate::utils::generics(self.db.upcast(), impl_id.into());
                let substs = generics.placeholder_subst(self.db);
                let ty = self.db.impl_self_ty(impl_id).substitute(Interner, &substs);
                self.resolve_variant_on_alias(ty, unresolved, path)
            }
            TypeNs::TypeAliasId(it) => {
                let container = it.lookup(self.db.upcast()).container;
                let parent_subst = match container {
                    ItemContainerId::TraitId(id) => {
                        let subst = TyBuilder::subst_for_def(self.db, id, None)
                            .fill_with_inference_vars(&mut self.table)
                            .build();
                        Some(subst)
                    }
                    // Type aliases do not exist in impls.
                    _ => None,
                };
                let ty = TyBuilder::def_ty(self.db, it.into(), parent_subst)
                    .fill_with_inference_vars(&mut self.table)
                    .build();
                self.resolve_variant_on_alias(ty, unresolved, path)
            }
            TypeNs::AdtSelfType(_) => {
                // FIXME this could happen in array size expressions, once we're checking them
                (self.err_ty(), None)
            }
            TypeNs::GenericParam(_) => {
                // FIXME potentially resolve assoc type
                (self.err_ty(), None)
            }
            TypeNs::AdtId(AdtId::EnumId(_)) | TypeNs::BuiltinType(_) | TypeNs::TraitId(_) => {
                // FIXME diagnostic
                (self.err_ty(), None)
            }
        };

        fn forbid_unresolved_segments(
            result: (Ty, Option<VariantId>),
            unresolved: Option<usize>,
        ) -> (Ty, Option<VariantId>) {
            if unresolved.is_none() {
                result
            } else {
                // FIXME diagnostic
                (TyKind::Error.intern(Interner), None)
            }
        }
    }

    fn resolve_variant_on_alias(
        &mut self,
        ty: Ty,
        unresolved: Option<usize>,
        path: &Path,
    ) -> (Ty, Option<VariantId>) {
        let remaining = unresolved.map(|x| path.segments().skip(x).len()).filter(|x| x > &0);
        match remaining {
            None => {
                let variant = ty.as_adt().and_then(|(adt_id, _)| match adt_id {
                    AdtId::StructId(s) => Some(VariantId::StructId(s)),
                    AdtId::UnionId(u) => Some(VariantId::UnionId(u)),
                    AdtId::EnumId(_) => {
                        // FIXME Error E0071, expected struct, variant or union type, found enum `Foo`
                        None
                    }
                });
                (ty, variant)
            }
            Some(1) => {
                let segment = path.mod_path().segments().last().unwrap();
                // this could be an enum variant or associated type
                if let Some((AdtId::EnumId(enum_id), _)) = ty.as_adt() {
                    let enum_data = self.db.enum_data(enum_id);
                    if let Some(local_id) = enum_data.variant(segment) {
                        let variant = EnumVariantId { parent: enum_id, local_id };
                        return (ty, Some(variant.into()));
                    }
                }
                // FIXME potentially resolve assoc type
                (self.err_ty(), None)
            }
            Some(_) => {
                // FIXME diagnostic
                (self.err_ty(), None)
            }
        }
    }

    fn resolve_lang_item(&self, name: Name) -> Option<LangItemTarget> {
        let krate = self.resolver.krate();
        self.db.lang_item(krate, name.to_smol_str())
    }

    fn resolve_into_iter_item(&self) -> Option<TypeAliasId> {
        let path = path![core::iter::IntoIterator];
        let trait_ = self.resolver.resolve_known_trait(self.db.upcast(), &path)?;
        self.db.trait_data(trait_).associated_type_by_name(&name![IntoIter])
    }

    fn resolve_iterator_item(&self) -> Option<TypeAliasId> {
        let path = path![core::iter::Iterator];
        let trait_ = self.resolver.resolve_known_trait(self.db.upcast(), &path)?;
        self.db.trait_data(trait_).associated_type_by_name(&name![Item])
    }

    fn resolve_ops_try_ok(&self) -> Option<TypeAliasId> {
        // FIXME resolve via lang_item once try v2 is stable
        let path = path![core::ops::Try];
        let trait_ = self.resolver.resolve_known_trait(self.db.upcast(), &path)?;
        let trait_data = self.db.trait_data(trait_);
        trait_data
            // FIXME remove once try v2 is stable
            .associated_type_by_name(&name![Ok])
            .or_else(|| trait_data.associated_type_by_name(&name![Output]))
    }

    fn resolve_ops_neg_output(&self) -> Option<TypeAliasId> {
        let trait_ = self.resolve_lang_item(name![neg])?.as_trait()?;
        self.db.trait_data(trait_).associated_type_by_name(&name![Output])
    }

    fn resolve_ops_not_output(&self) -> Option<TypeAliasId> {
        let trait_ = self.resolve_lang_item(name![not])?.as_trait()?;
        self.db.trait_data(trait_).associated_type_by_name(&name![Output])
    }

    fn resolve_future_future_output(&self) -> Option<TypeAliasId> {
        let trait_ = self
            .resolver
            .resolve_known_trait(self.db.upcast(), &path![core::future::IntoFuture])
            .or_else(|| self.resolve_lang_item(name![future_trait])?.as_trait())?;
        self.db.trait_data(trait_).associated_type_by_name(&name![Output])
    }

    fn resolve_boxed_box(&self) -> Option<AdtId> {
        let struct_ = self.resolve_lang_item(name![owned_box])?.as_struct()?;
        Some(struct_.into())
    }

    fn resolve_range_full(&self) -> Option<AdtId> {
        let path = path![core::ops::RangeFull];
        let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
        Some(struct_.into())
    }

    fn resolve_range(&self) -> Option<AdtId> {
        let path = path![core::ops::Range];
        let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
        Some(struct_.into())
    }

    fn resolve_range_inclusive(&self) -> Option<AdtId> {
        let path = path![core::ops::RangeInclusive];
        let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
        Some(struct_.into())
    }

    fn resolve_range_from(&self) -> Option<AdtId> {
        let path = path![core::ops::RangeFrom];
        let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
        Some(struct_.into())
    }

    fn resolve_range_to(&self) -> Option<AdtId> {
        let path = path![core::ops::RangeTo];
        let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
        Some(struct_.into())
    }

    fn resolve_range_to_inclusive(&self) -> Option<AdtId> {
        let path = path![core::ops::RangeToInclusive];
        let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
        Some(struct_.into())
    }

    fn resolve_ops_index(&self) -> Option<TraitId> {
        self.resolve_lang_item(name![index])?.as_trait()
    }

    fn resolve_ops_index_output(&self) -> Option<TypeAliasId> {
        let trait_ = self.resolve_ops_index()?;
        self.db.trait_data(trait_).associated_type_by_name(&name![Output])
    }

    fn resolve_va_list(&self) -> Option<AdtId> {
        let struct_ = self.resolve_lang_item(name![va_list])?.as_struct()?;
        Some(struct_.into())
    }
}

/// When inferring an expression, we propagate downward whatever type hint we
/// are able in the form of an `Expectation`.
#[derive(Clone, PartialEq, Eq, Debug)]
pub(crate) enum Expectation {
    None,
    HasType(Ty),
    // Castable(Ty), // rustc has this, we currently just don't propagate an expectation for casts
    RValueLikeUnsized(Ty),
}

impl Expectation {
    /// The expectation that the type of the expression needs to equal the given
    /// type.
    fn has_type(ty: Ty) -> Self {
        if ty.is_unknown() {
            // FIXME: get rid of this?
            Expectation::None
        } else {
            Expectation::HasType(ty)
        }
    }

    fn from_option(ty: Option<Ty>) -> Self {
        ty.map_or(Expectation::None, Expectation::HasType)
    }

    /// The following explanation is copied straight from rustc:
    /// Provides an expectation for an rvalue expression given an *optional*
    /// hint, which is not required for type safety (the resulting type might
    /// be checked higher up, as is the case with `&expr` and `box expr`), but
    /// is useful in determining the concrete type.
    ///
    /// The primary use case is where the expected type is a fat pointer,
    /// like `&[isize]`. For example, consider the following statement:
    ///
    ///     let x: &[isize] = &[1, 2, 3];
    ///
    /// In this case, the expected type for the `&[1, 2, 3]` expression is
    /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
    /// expectation `ExpectHasType([isize])`, that would be too strong --
    /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
    /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
    /// to the type `&[isize]`. Therefore, we propagate this more limited hint,
    /// which still is useful, because it informs integer literals and the like.
    /// See the test case `test/ui/coerce-expect-unsized.rs` and #20169
    /// for examples of where this comes up,.
    fn rvalue_hint(table: &mut unify::InferenceTable<'_>, ty: Ty) -> Self {
        // FIXME: do struct_tail_without_normalization
        match table.resolve_ty_shallow(&ty).kind(Interner) {
            TyKind::Slice(_) | TyKind::Str | TyKind::Dyn(_) => Expectation::RValueLikeUnsized(ty),
            _ => Expectation::has_type(ty),
        }
    }

    /// This expresses no expectation on the type.
    fn none() -> Self {
        Expectation::None
    }

    fn resolve(&self, table: &mut unify::InferenceTable<'_>) -> Expectation {
        match self {
            Expectation::None => Expectation::None,
            Expectation::HasType(t) => Expectation::HasType(table.resolve_ty_shallow(t)),
            Expectation::RValueLikeUnsized(t) => {
                Expectation::RValueLikeUnsized(table.resolve_ty_shallow(t))
            }
        }
    }

    fn to_option(&self, table: &mut unify::InferenceTable<'_>) -> Option<Ty> {
        match self.resolve(table) {
            Expectation::None => None,
            Expectation::HasType(t) |
            // Expectation::Castable(t) |
            Expectation::RValueLikeUnsized(t) => Some(t),
        }
    }

    fn only_has_type(&self, table: &mut unify::InferenceTable<'_>) -> Option<Ty> {
        match self {
            Expectation::HasType(t) => Some(table.resolve_ty_shallow(t)),
            // Expectation::Castable(_) |
            Expectation::RValueLikeUnsized(_) | Expectation::None => None,
        }
    }

    /// Comment copied from rustc:
    /// Disregard "castable to" expectations because they
    /// can lead us astray. Consider for example `if cond
    /// {22} else {c} as u8` -- if we propagate the
    /// "castable to u8" constraint to 22, it will pick the
    /// type 22u8, which is overly constrained (c might not
    /// be a u8). In effect, the problem is that the
    /// "castable to" expectation is not the tightest thing
    /// we can say, so we want to drop it in this case.
    /// The tightest thing we can say is "must unify with
    /// else branch". Note that in the case of a "has type"
    /// constraint, this limitation does not hold.
    ///
    /// If the expected type is just a type variable, then don't use
    /// an expected type. Otherwise, we might write parts of the type
    /// when checking the 'then' block which are incompatible with the
    /// 'else' branch.
    fn adjust_for_branches(&self, table: &mut unify::InferenceTable<'_>) -> Expectation {
        match self {
            Expectation::HasType(ety) => {
                let ety = table.resolve_ty_shallow(ety);
                if !ety.is_ty_var() {
                    Expectation::HasType(ety)
                } else {
                    Expectation::None
                }
            }
            Expectation::RValueLikeUnsized(ety) => Expectation::RValueLikeUnsized(ety.clone()),
            _ => Expectation::None,
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum Diverges {
    Maybe,
    Always,
}

impl Diverges {
    fn is_always(self) -> bool {
        self == Diverges::Always
    }
}

impl std::ops::BitAnd for Diverges {
    type Output = Self;
    fn bitand(self, other: Self) -> Self {
        std::cmp::min(self, other)
    }
}

impl std::ops::BitOr for Diverges {
    type Output = Self;
    fn bitor(self, other: Self) -> Self {
        std::cmp::max(self, other)
    }
}

impl std::ops::BitAndAssign for Diverges {
    fn bitand_assign(&mut self, other: Self) {
        *self = *self & other;
    }
}

impl std::ops::BitOrAssign for Diverges {
    fn bitor_assign(&mut self, other: Self) {
        *self = *self | other;
    }
}