summaryrefslogtreecommitdiffstats
path: root/src/tools/rust-analyzer/crates/ide-db/src/path_transform.rs
blob: 6402a84a68bb350045286fba2896bd694c94766d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
//! See [`PathTransform`].

use crate::helpers::mod_path_to_ast;
use either::Either;
use hir::{AsAssocItem, HirDisplay, SemanticsScope};
use rustc_hash::FxHashMap;
use syntax::{
    ast::{self, AstNode},
    ted, SyntaxNode,
};

/// `PathTransform` substitutes path in SyntaxNodes in bulk.
///
/// This is mostly useful for IDE code generation. If you paste some existing
/// code into a new context (for example, to add method overrides to an `impl`
/// block), you generally want to appropriately qualify the names, and sometimes
/// you might want to substitute generic parameters as well:
///
/// ```
/// mod x {
///   pub struct A<V>;
///   pub trait T<U> { fn foo(&self, _: U) -> A<U>; }
/// }
///
/// mod y {
///   use x::T;
///
///   impl T<()> for () {
///      // If we invoke **Add Missing Members** here, we want to copy-paste `foo`.
///      // But we want a slightly-modified version of it:
///      fn foo(&self, _: ()) -> x::A<()> {}
///   }
/// }
/// ```
pub struct PathTransform<'a> {
    generic_def: Option<hir::GenericDef>,
    substs: Vec<ast::Type>,
    target_scope: &'a SemanticsScope<'a>,
    source_scope: &'a SemanticsScope<'a>,
}

impl<'a> PathTransform<'a> {
    pub fn trait_impl(
        target_scope: &'a SemanticsScope<'a>,
        source_scope: &'a SemanticsScope<'a>,
        trait_: hir::Trait,
        impl_: ast::Impl,
    ) -> PathTransform<'a> {
        PathTransform {
            source_scope,
            target_scope,
            generic_def: Some(trait_.into()),
            substs: get_syntactic_substs(impl_).unwrap_or_default(),
        }
    }

    pub fn function_call(
        target_scope: &'a SemanticsScope<'a>,
        source_scope: &'a SemanticsScope<'a>,
        function: hir::Function,
        generic_arg_list: ast::GenericArgList,
    ) -> PathTransform<'a> {
        PathTransform {
            source_scope,
            target_scope,
            generic_def: Some(function.into()),
            substs: get_type_args_from_arg_list(generic_arg_list).unwrap_or_default(),
        }
    }

    pub fn generic_transformation(
        target_scope: &'a SemanticsScope<'a>,
        source_scope: &'a SemanticsScope<'a>,
    ) -> PathTransform<'a> {
        PathTransform { source_scope, target_scope, generic_def: None, substs: Vec::new() }
    }

    pub fn apply(&self, syntax: &SyntaxNode) {
        self.build_ctx().apply(syntax)
    }

    pub fn apply_all<'b>(&self, nodes: impl IntoIterator<Item = &'b SyntaxNode>) {
        let ctx = self.build_ctx();
        for node in nodes {
            ctx.apply(node);
        }
    }

    fn build_ctx(&self) -> Ctx<'a> {
        let db = self.source_scope.db;
        let target_module = self.target_scope.module();
        let source_module = self.source_scope.module();
        let skip = match self.generic_def {
            // this is a trait impl, so we need to skip the first type parameter -- this is a bit hacky
            Some(hir::GenericDef::Trait(_)) => 1,
            _ => 0,
        };
        let substs_by_param: FxHashMap<_, _> = self
            .generic_def
            .into_iter()
            .flat_map(|it| it.type_params(db))
            .skip(skip)
            // The actual list of trait type parameters may be longer than the one
            // used in the `impl` block due to trailing default type parameters.
            // For that case we extend the `substs` with an empty iterator so we
            // can still hit those trailing values and check if they actually have
            // a default type. If they do, go for that type from `hir` to `ast` so
            // the resulting change can be applied correctly.
            .zip(self.substs.iter().map(Some).chain(std::iter::repeat(None)))
            .filter_map(|(k, v)| match k.split(db) {
                Either::Left(_) => None,
                Either::Right(t) => match v {
                    Some(v) => Some((k, v.clone())),
                    None => {
                        let default = t.default(db)?;
                        Some((
                            k,
                            ast::make::ty(
                                &default.display_source_code(db, source_module.into()).ok()?,
                            ),
                        ))
                    }
                },
            })
            .collect();
        Ctx { substs: substs_by_param, target_module, source_scope: self.source_scope }
    }
}

struct Ctx<'a> {
    substs: FxHashMap<hir::TypeOrConstParam, ast::Type>,
    target_module: hir::Module,
    source_scope: &'a SemanticsScope<'a>,
}

impl<'a> Ctx<'a> {
    fn apply(&self, item: &SyntaxNode) {
        // `transform_path` may update a node's parent and that would break the
        // tree traversal. Thus all paths in the tree are collected into a vec
        // so that such operation is safe.
        let paths = item
            .preorder()
            .filter_map(|event| match event {
                syntax::WalkEvent::Enter(_) => None,
                syntax::WalkEvent::Leave(node) => Some(node),
            })
            .filter_map(ast::Path::cast)
            .collect::<Vec<_>>();

        for path in paths {
            self.transform_path(path);
        }
    }
    fn transform_path(&self, path: ast::Path) -> Option<()> {
        if path.qualifier().is_some() {
            return None;
        }
        if path.segment().map_or(false, |s| {
            s.param_list().is_some() || (s.self_token().is_some() && path.parent_path().is_none())
        }) {
            // don't try to qualify `Fn(Foo) -> Bar` paths, they are in prelude anyway
            // don't try to qualify sole `self` either, they are usually locals, but are returned as modules due to namespace clashing
            return None;
        }

        let resolution = self.source_scope.speculative_resolve(&path)?;

        match resolution {
            hir::PathResolution::TypeParam(tp) => {
                if let Some(subst) = self.substs.get(&tp.merge()) {
                    let parent = path.syntax().parent()?;
                    if let Some(parent) = ast::Path::cast(parent.clone()) {
                        // Path inside path means that there is an associated
                        // type/constant on the type parameter. It is necessary
                        // to fully qualify the type with `as Trait`. Even
                        // though it might be unnecessary if `subst` is generic
                        // type, always fully qualifying the path is safer
                        // because of potential clash of associated types from
                        // multiple traits

                        let trait_ref = find_trait_for_assoc_item(
                            self.source_scope,
                            tp,
                            parent.segment()?.name_ref()?,
                        )
                        .and_then(|trait_ref| {
                            let found_path = self.target_module.find_use_path(
                                self.source_scope.db.upcast(),
                                hir::ModuleDef::Trait(trait_ref),
                                false,
                            )?;
                            match ast::make::ty_path(mod_path_to_ast(&found_path)) {
                                ast::Type::PathType(path_ty) => Some(path_ty),
                                _ => None,
                            }
                        });

                        let segment = ast::make::path_segment_ty(subst.clone(), trait_ref);
                        let qualified =
                            ast::make::path_from_segments(std::iter::once(segment), false);
                        ted::replace(path.syntax(), qualified.clone_for_update().syntax());
                    } else if let Some(path_ty) = ast::PathType::cast(parent) {
                        ted::replace(
                            path_ty.syntax(),
                            subst.clone_subtree().clone_for_update().syntax(),
                        );
                    } else {
                        ted::replace(
                            path.syntax(),
                            subst.clone_subtree().clone_for_update().syntax(),
                        );
                    }
                }
            }
            hir::PathResolution::Def(def) if def.as_assoc_item(self.source_scope.db).is_none() => {
                if let hir::ModuleDef::Trait(_) = def {
                    if matches!(path.segment()?.kind()?, ast::PathSegmentKind::Type { .. }) {
                        // `speculative_resolve` resolves segments like `<T as
                        // Trait>` into `Trait`, but just the trait name should
                        // not be used as the replacement of the original
                        // segment.
                        return None;
                    }
                }

                let found_path =
                    self.target_module.find_use_path(self.source_scope.db.upcast(), def, false)?;
                let res = mod_path_to_ast(&found_path).clone_for_update();
                if let Some(args) = path.segment().and_then(|it| it.generic_arg_list()) {
                    if let Some(segment) = res.segment() {
                        let old = segment.get_or_create_generic_arg_list();
                        ted::replace(old.syntax(), args.clone_subtree().syntax().clone_for_update())
                    }
                }
                ted::replace(path.syntax(), res.syntax())
            }
            hir::PathResolution::Local(_)
            | hir::PathResolution::ConstParam(_)
            | hir::PathResolution::SelfType(_)
            | hir::PathResolution::Def(_)
            | hir::PathResolution::BuiltinAttr(_)
            | hir::PathResolution::ToolModule(_)
            | hir::PathResolution::DeriveHelper(_) => (),
        }
        Some(())
    }
}

// FIXME: It would probably be nicer if we could get this via HIR (i.e. get the
// trait ref, and then go from the types in the substs back to the syntax).
fn get_syntactic_substs(impl_def: ast::Impl) -> Option<Vec<ast::Type>> {
    let target_trait = impl_def.trait_()?;
    let path_type = match target_trait {
        ast::Type::PathType(path) => path,
        _ => return None,
    };
    let generic_arg_list = path_type.path()?.segment()?.generic_arg_list()?;

    get_type_args_from_arg_list(generic_arg_list)
}

fn get_type_args_from_arg_list(generic_arg_list: ast::GenericArgList) -> Option<Vec<ast::Type>> {
    let mut result = Vec::new();
    for generic_arg in generic_arg_list.generic_args() {
        if let ast::GenericArg::TypeArg(type_arg) = generic_arg {
            result.push(type_arg.ty()?)
        }
    }

    Some(result)
}

fn find_trait_for_assoc_item(
    scope: &SemanticsScope<'_>,
    type_param: hir::TypeParam,
    assoc_item: ast::NameRef,
) -> Option<hir::Trait> {
    let db = scope.db;
    let trait_bounds = type_param.trait_bounds(db);

    let assoc_item_name = assoc_item.text();

    for trait_ in trait_bounds {
        let names = trait_.items(db).into_iter().filter_map(|item| match item {
            hir::AssocItem::TypeAlias(ta) => Some(ta.name(db)),
            hir::AssocItem::Const(cst) => cst.name(db),
            _ => None,
        });

        for name in names {
            if assoc_item_name.as_str() == name.as_text()?.as_str() {
                // It is fine to return the first match because in case of
                // multiple possibilities, the exact trait must be disambiguated
                // in the definition of trait being implemented, so this search
                // should not be needed.
                return Some(trait_);
            }
        }
    }

    None
}