summaryrefslogtreecommitdiffstats
path: root/tests/assembly/stack-protector/stack-protector-heuristics-effect.rs
blob: 7c2b605509053c7fb4d8e974d50973203b038cc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
// revisions: all strong basic none missing
// assembly-output: emit-asm
// ignore-macos slightly different policy on stack protection of arrays
// ignore-windows stack check code uses different function names
// ignore-nvptx64 stack protector is not supported
// [all] compile-flags: -Z stack-protector=all
// [strong] compile-flags: -Z stack-protector=strong
// [basic] compile-flags: -Z stack-protector=basic
// [none] compile-flags: -Z stack-protector=none
// compile-flags: -C opt-level=2 -Z merge-functions=disabled

#![crate_type = "lib"]

#![allow(incomplete_features)]

#![feature(unsized_locals, unsized_fn_params)]


// CHECK-LABEL: emptyfn:
#[no_mangle]
pub fn emptyfn() {
    // all: __stack_chk_fail
    // strong-NOT: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}

// CHECK-LABEL: array_char
#[no_mangle]
pub fn array_char(f: fn(*const char)) {
    let a = ['c'; 1];
    let b = ['d'; 3];
    let c = ['e'; 15];

    f(&a as *const _);
    f(&b as *const _);
    f(&c as *const _);

    // Any type of local array variable leads to stack protection with the
    // "strong" heuristic. The 'basic' heuristic only adds stack protection to
    // functions with local array variables of a byte-sized type, however. Since
    // 'char' is 4 bytes in Rust, this function is not protected by the 'basic'
    // heuristic
    //
    // (This test *also* takes the address of the local stack variables. We
    // cannot know that this isn't what triggers the `strong` heuristic.
    // However, the test strategy of passing the address of a stack array to an
    // external function is sufficient to trigger the `basic` heuristic (see
    // test `array_u8_large()`). Since the `basic` heuristic only checks for the
    // presence of stack-local array variables, we can be confident that this
    // test also captures this part of the `strong` heuristic specification.)

    // all: __stack_chk_fail
    // strong: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}

// CHECK-LABEL: array_u8_1
#[no_mangle]
pub fn array_u8_1(f: fn(*const u8)) {
    let a = [0u8; 1];
    f(&a as *const _);

    // The 'strong' heuristic adds stack protection to functions with local
    // array variables regardless of their size.

    // all: __stack_chk_fail
    // strong: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}

// CHECK-LABEL: array_u8_small:
#[no_mangle]
pub fn array_u8_small(f: fn(*const u8)) {
    let a = [0u8; 2];
    let b = [0u8; 7];
    f(&a as *const _);
    f(&b as *const _);

    // Small arrays do not lead to stack protection by the 'basic' heuristic.

    // all: __stack_chk_fail
    // strong: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}

// CHECK-LABEL: array_u8_large:
#[no_mangle]
pub fn array_u8_large(f: fn(*const u8)) {
    let a = [0u8; 9];
    f(&a as *const _);

    // Since `a` is a byte array with size greater than 8, the basic heuristic
    // will also protect this function.

    // all: __stack_chk_fail
    // strong: __stack_chk_fail
    // basic: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}

#[derive(Copy, Clone)]
pub struct ByteSizedNewtype(u8);

// CHECK-LABEL: array_bytesizednewtype_9:
#[no_mangle]
pub fn array_bytesizednewtype_9(f: fn(*const ByteSizedNewtype)) {
    let a = [ByteSizedNewtype(0); 9];
    f(&a as *const _);

    // Since `a` is a byte array in the LLVM output, the basic heuristic will
    // also protect this function.

    // all: __stack_chk_fail
    // strong: __stack_chk_fail
    // basic: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}

// CHECK-LABEL: local_var_addr_used_indirectly
#[no_mangle]
pub fn local_var_addr_used_indirectly(f: fn(bool)) {
    let a = 5;
    let a_addr = &a as *const _ as usize;
    f(a_addr & 0x10 == 0);

    // This function takes the address of a local variable taken. Although this
    // address is never used as a way to refer to stack memory, the `strong`
    // heuristic adds stack smash protection. This is also the case in C++:
    // ```
    // cat << EOF | clang++ -O2 -fstack-protector-strong -S -x c++ - -o - | grep stack_chk
    // #include <cstdint>
    // void f(void (*g)(bool)) {
    //     int32_t x;
    //     g((reinterpret_cast<uintptr_t>(&x) & 0x10U) == 0);
    // }
    // EOF
    // ```

    // all: __stack_chk_fail
    // strong: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}


// CHECK-LABEL: local_string_addr_taken
#[no_mangle]
pub fn local_string_addr_taken(f: fn(&String)) {
    let x = String::new();
    f(&x);

    // Taking the address of the local variable `x` leads to stack smash
    // protection with the `strong` heuristic, but not with the `basic`
    // heuristic. It does not matter that the reference is not mut.
    //
    // An interesting note is that a similar function in C++ *would* be
    // protected by the `basic` heuristic, because `std::string` has a char
    // array internally as a small object optimization:
    // ```
    // cat <<EOF | clang++ -O2 -fstack-protector -S -x c++ - -o - | grep stack_chk
    // #include <string>
    // void f(void (*g)(const std::string&)) {
    //     std::string x;
    //     g(x);
    // }
    // EOF
    // ```
    //

    // all: __stack_chk_fail
    // strong: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}

pub trait SelfByRef {
    fn f(&self) -> i32;
}

impl SelfByRef for i32 {
    fn f(&self) -> i32 {
        return self + 1;
    }
}

// CHECK-LABEL: local_var_addr_taken_used_locally_only
#[no_mangle]
pub fn local_var_addr_taken_used_locally_only(factory: fn() -> i32, sink: fn(i32)) {
    let x = factory();
    let g = x.f();
    sink(g);

    // Even though the local variable conceptually has its address taken, as
    // it's passed by reference to the trait function, the use of the reference
    // is easily inlined. There is therefore no stack smash protection even with
    // the `strong` heuristic.

    // all: __stack_chk_fail
    // strong-NOT: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}

pub struct Gigastruct {
    does: u64,
    not: u64,
    have: u64,
    array: u64,
    members: u64
}

// CHECK-LABEL: local_large_var_moved
#[no_mangle]
pub fn local_large_var_moved(f: fn(Gigastruct)) {
    let x = Gigastruct { does: 0, not: 1, have: 2, array: 3, members: 4 };
    f(x);

    // Even though the local variable conceptually doesn't have its address
    // taken, it's so large that the "move" is implemented with a reference to a
    // stack-local variable in the ABI. Consequently, this function *is*
    // protected by the `strong` heuristic. This is also the case for
    // rvalue-references in C++, regardless of struct size:
    // ```
    // cat <<EOF | clang++ -O2 -fstack-protector-strong -S -x c++ - -o - | grep stack_chk
    // #include <cstdint>
    // #include <utility>
    // void f(void (*g)(uint64_t&&)) {
    //     uint64_t x;
    //     g(std::move(x));
    // }
    // EOF
    // ```

    // all: __stack_chk_fail
    // strong: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}

// CHECK-LABEL: local_large_var_cloned
#[no_mangle]
pub fn local_large_var_cloned(f: fn(Gigastruct)) {
    f(Gigastruct { does: 0, not: 1, have: 2, array: 3, members: 4 });

    // A new instance of `Gigastruct` is passed to `f()`, without any apparent
    // connection to this stack frame. Still, since instances of `Gigastruct`
    // are sufficiently large, it is allocated in the caller stack frame and
    // passed as a pointer. As such, this function is *also* protected by the
    // `strong` heuristic, just like `local_large_var_moved`. This is also the
    // case for pass-by-value of sufficiently large structs in C++:
    // ```
    // cat <<EOF | clang++ -O2 -fstack-protector-strong -S -x c++ - -o - | grep stack_chk
    // #include <cstdint>
    // #include <utility>
    // struct Gigastruct { uint64_t a, b, c, d, e; };
    // void f(void (*g)(Gigastruct)) {
    //     g(Gigastruct{});
    // }
    // EOF
    // ```


    // all: __stack_chk_fail
    // strong: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}


extern "C" {
    // A call to an external `alloca` function is *not* recognized as an
    // `alloca(3)` operation. This function is a compiler built-in, as the
    // man page explains. Clang translates it to an LLVM `alloca`
    // instruction with a count argument, which is also what the LLVM stack
    // protector heuristics looks for. The man page for `alloca(3)` details
    // a way to avoid using the compiler built-in: pass a -std=c11
    // argument, *and* don't include <alloca.h>. Though this leads to an
    // external alloca() function being called, it doesn't lead to stack
    // protection being included. It even fails with a linker error
    // "undefined reference to `alloca'". Example:
    // ```
    // cat<<EOF | clang -fstack-protector-strong -x c -std=c11 - -o /dev/null
    // #include <stdlib.h>
    // void * alloca(size_t);
    // void f(void (*g)(void*)) {
    //     void * p = alloca(10);
    //     g(p);
    // }
    // int main() { return 0; }
    // EOF
    // ```
    // The following tests demonstrate that calls to an external `alloca`
    // function in Rust also doesn't trigger stack protection.

    fn alloca(size: usize) -> *mut ();
}

// CHECK-LABEL: alloca_small_compile_time_constant_arg
#[no_mangle]
pub fn alloca_small_compile_time_constant_arg(f: fn(*mut ())) {
    f(unsafe { alloca(8) });

    // all: __stack_chk_fail
    // strong-NOT: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}

// CHECK-LABEL: alloca_large_compile_time_constant_arg
#[no_mangle]
pub fn alloca_large_compile_time_constant_arg(f: fn(*mut ())) {
    f(unsafe { alloca(9) });

    // all: __stack_chk_fail
    // strong-NOT: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}


// CHECK-LABEL: alloca_dynamic_arg
#[no_mangle]
pub fn alloca_dynamic_arg(f: fn(*mut ()), n: usize) {
    f(unsafe { alloca(n) });

    // all: __stack_chk_fail
    // strong-NOT: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}

// The question then is: in what ways can Rust code generate array-`alloca`
// LLVM instructions? This appears to only be generated by
// rustc_codegen_ssa::traits::Builder::array_alloca() through
// rustc_codegen_ssa::mir::operand::OperandValue::store_unsized(). FWICT
// this is support for the "unsized locals" unstable feature:
// https://doc.rust-lang.org/unstable-book/language-features/unsized-locals.html.


// CHECK-LABEL: unsized_fn_param
#[no_mangle]
pub fn unsized_fn_param(s: [u8], l: bool, f: fn([u8])) {
    let n = if l { 1 } else { 2 };
    f(*Box::<[u8]>::from(&s[0..n])); // slice-copy with Box::from

    // Even though slices are conceptually passed by-value both into this
    // function and into `f()`, this is implemented with pass-by-reference
    // using a suitably constructed fat-pointer (as if the functions
    // accepted &[u8]). This function therefore doesn't need dynamic array
    // alloca, and is therefore not protected by the `strong` or `basic`
    // heuristics.


    // all: __stack_chk_fail
    // strong-NOT: __stack_chk_fail
    // basic-NOT: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}

// CHECK-LABEL: unsized_local
#[no_mangle]
pub fn unsized_local(s: &[u8], l: bool, f: fn(&mut [u8])) {
    let n = if l { 1 } else { 2 };
    let mut a: [u8] = *Box::<[u8]>::from(&s[0..n]); // slice-copy with Box::from
    f(&mut a);

    // This function allocates a slice as a local variable in its stack
    // frame. Since the size is not a compile-time constant, an array
    // alloca is required, and the function is protected by both the
    // `strong` and `basic` heuristic.

    // all: __stack_chk_fail
    // strong: __stack_chk_fail
    // basic: __stack_chk_fail
    // none-NOT: __stack_chk_fail
    // missing-NOT: __stack_chk_fail
}