1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
// check-pass
// This test checks that we're correctly dealing with inductive cycles
// with canonical inference variables.
trait Trait<T, U> {}
trait IsNotU32 {}
impl IsNotU32 for i32 {}
impl<T: IsNotU32, U> Trait<T, U> for () // impl 1
where
(): Trait<U, T>
{}
impl<T> Trait<u32, T> for () {} // impl 2
// If we now check whether `(): Trait<?0, ?1>` holds this has to
// result in ambiguity as both `for<T> (): Trait<u32, T>` and `(): Trait<i32, u32>`
// applies. The remainder of this test asserts that.
// If we were to error on inductive cycles with canonical inference variables
// this would be wrong:
// (): Trait<?0, ?1>
// - impl 1
// - ?0: IsNotU32 // ambig
// - (): Trait<?1, ?0> // canonical cycle -> err
// - ERR
// - impl 2
// - OK ?0 == u32
//
// Result: OK ?0 == u32.
// (): Trait<i32, u32>
// - impl 1
// - i32: IsNotU32 // ok
// - (): Trait<u32, i32>
// - impl 1
// - u32: IsNotU32 // err
// - ERR
// - impl 2
// - OK
// - OK
// - impl 2 (trivial ERR)
//
// Result OK
// This would mean that `(): Trait<?0, ?1>` is not complete,
// which is unsound if we're in coherence.
fn implements_trait<T, U>() -> (T, U)
where
(): Trait<T, U>,
{
todo!()
}
// A hack to only constrain the infer vars after first checking
// the `(): Trait<_, _>`.
trait Constrain<T> {}
impl<T> Constrain<T> for T {}
fn constrain<T: Constrain<U>, U>(_: U) {}
fn main() {
let (x, y) = implements_trait::<_, _>();
constrain::<i32, _>(x);
constrain::<u32, _>(y);
}
|